[1] Li, J. M. & Zhang, G. Q. Light-emitting diodes: : materials, processes, devices and applications (Cham, Springer International Publishing, 2019).
[2] Schubert, E. F. Light-emitting diodes. in Wiley Encyclopedia of Electrical and Electronics Engineering (ed Webster, J. G.) 1–10 (New York, John Wiley & Sons, Inc., 2014). https://doi.org/10.1002/047134608X.W3144.pub2.
[3] Kim, D.-H. et al. Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns. Appl. Phys. Lett. 87, 203508 (2005). doi: 10.1063/1.2132073
[4] Djavid, M. & Mi, Z. T. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl. Phys. Lett. 108, 051102 (2016). doi: 10.1063/1.4941239
[5] Fujii, T. et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84, 855–857 (2004). doi: 10.1063/1.1645992
[6] Cho, J. et al. White light-emitting diodes: history, progress, and future. Laser Photonics Rev. 11, 1600147 (2017). doi: 10.1002/lpor.201600147
[7] Weisbuch, C. et al. The efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi A 212, 899–913 (2015). doi: 10.1002/pssa.201431868
[8] Kneissl, M. et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2011). doi: 10.1088/0268-1242/26/1/014036
[9] Crawford, M. H. LEDs for solid-state lighting: performance challenges and recent advances. J. Sel. Top. Quantum Electron. 15, 1028–1040 (2009). doi: 10.1109/JSTQE.2009.2013476
[10] Lee, S., Hong, J.-Y. & Jang, J. Multifunctional graphene sheets embedded in silicone encapsulant for superior performance of light-emitting diodes. ACS Nano 7, 5784–5790 (2013). doi: 10.1021/nn4024587
[11] Nishizawa, N., Nishibayashi, K. & Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proc. Natl Acad. Sci. USA 114, 1783–1788 (2017). doi: 10.1073/pnas.1609839114
[12] Li, J. & Zhang, G. Q. Light-Emitting Diodes. 4, (Springer International Publishing, 2019).
[13] Moreno, I., Bermúdez, D. & Avendaño-Alejo, M. Light-emitting diode spherical packages: an equation for the light transmission efficiency. Appl. Opt. 49, 12–20 (2010). doi: 10.1364/AO.49.000012
[14] Ma, M. et al. Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes. Opt. Express 19, A1135–A1140 (2011). doi: 10.1364/OE.19.0A1135
[15] Ee, Y. K. et al. Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses. IEEE J. Sel. Top. Quantum Electron. 15, 1218–1225 (2009). doi: 10.1109/JSTQE.2009.2015580
[16] Chung, P. T. et al. ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136, 868–876 (2012). doi: 10.1016/j.matchemphys.2012.08.013
[17] Mont, F. et al. High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes. J. Appl. Phys. 103, 083120 (2008). doi: 10.1063/1.2903484
[18] Li, T. et al. High-performance light-emitting diodes encapsulated with silica-filled epoxy materials. ACS Appl. Mater. Interfaces 5, 8968–8981 (2013). doi: 10.1021/am402035r
[19] Tong, L. et al. High refractive index adamantane-based silicone resins for the encapsulation of light-emitting diodes. Polym. Adv. Technol. 29, 2245–2252 (2018). doi: 10.1002/pat.4335
[20] Zheng, H. et al. Optical performance enhancement for chip-on-board packaging LEDs by adding TiO2/silicone encapsulation layer. IEEE Electron Device Lett. 35, 1046–1048 (2014). doi: 10.1109/LED.2014.2349951
[21] Lei, I. A. et al. Silicone hybrid materials useful for the encapsulation of light-emitting diodes. Mater. Chem. Phys. 144, 41–48 (2014). doi: 10.1016/j.matchemphys.2013.12.009
[22] Si, K. J. et al. Giant plasmene nanosheets, nanoribbons, and origami. ACS Nano 8, 11086–11093 (2014). doi: 10.1021/nn504615a
[23] Chen, Y. et al. Ultrathin plasmene nanosheets as soft and surface-attachable SERS substrates with high signal uniformity. Adv. Opt. Mater. 3, 919–924 (2015). doi: 10.1002/adom.201400635
[24] Halas, N. J. et al. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913 (2011). doi: 10.1021/cr200061k
[25] Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641–648 (2007). doi: 10.1038/nphoton.2007.223
[26] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370
[27] Sikdar, D. & Kornyshev, A. A. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces. Sci. Rep. 6, 33712 (2016). doi: 10.1038/srep33712
[28] Pinchuk, A., Hilger, A., Von Plessen, G. & Kreibig, U. Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15, 1890–1896 (2004). doi: 10.1088/0957-4484/15/12/036
[29] Sikdar, D., Rukhlenko, I. D., Cheng, W. & Premaratne, M. Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres. Plasmonics 9, 659–672 (2014). doi: 10.1007/s11468-014-9681-8
[30] Weir, H. et al. Towards electrotuneable nanoplasmonic Fabry–Perot interferometer. Sci. Rep. 8, 565 (2018). doi: 10.1038/s41598-017-19011-4
[31] Sikdar, D. & Kornyshev, A. A. An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials. Nanophotonics 8, 2279–2290 (2019). doi: 10.1515/nanoph-2019-0317
[32] Si, K. J. et al. Dual-coded plasmene nanosheets as next-generation anticounterfeit security labels. Adv. Opt. Mater. 3, 1710–1717 (2015). doi: 10.1002/adom.201500335
[33] Guo, P. Z. et al. Large-scale self-assembly and stretch-induced plasmonic properties of core-shell metal nanoparticle superlattice sheets. J. Phys. Chem. C. 118, 26816–26824 (2014). doi: 10.1021/jp508108a
[34] Singh, Y. P., Jain, A. & Kapoor, A. Localized surface plasmons enhanced light transmission into c-silicon solar cells. J. Sol. Energy 2013, 584283 (2013).
[35] García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007). doi: 10.1103/RevModPhys.79.1267