| [1] | Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005). doi: 10.1103/PhysRevLett.95.010501 |
| [2] | Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169-176 (2005). doi: 10.1038/nature03347 |
| [3] | Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148-153 (2019). doi: 10.1038/s41567-018-0347-x |
| [4] | Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895-1899 (1993). doi: 10.1103/PhysRevLett.70.1895 |
| [5] | Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575-579 (1997). doi: 10.1038/37539 |
| [6] | Ma, X. S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269-273 (2012). doi: 10.1038/nature11472 |
| [7] | Mattle, K. et al. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656-4659 (1996). doi: 10.1103/PhysRevLett.76.4656 |
| [8] | Wang, C. Y. et al. Generation of hyper-entangled photons in a hot atomic vapor. Opt. Lett. 45, 1802-1805 (2020). doi: 10.1364/OL.384567 |
| [9] | Marino, A. M. et al. Tunable delay of Einstein-Podolsky-Rosen entanglement. Nature 457, 859-862 (2009). doi: 10.1038/nature07751 |
| [10] | Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734-737 (2004). doi: 10.1038/nature02570 |
| [11] | Edamatsu, K. et al. Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167-170 (2004). doi: 10.1038/nature02838 |
| [12] | Hayat, A., Ginzburg, P. & Orenstein, M. Measurement and model of the infrared two-photon emission spectrum of GaAs. Phys. Rev. Lett. 103, 023601 (2009). doi: 10.1103/PhysRevLett.103.023601 |
| [13] | Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006). doi: 10.1088/1367-2630/8/2/029 |
| [14] | Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730-734 (2010). doi: 10.1038/nature09256 |
| [15] | Reimer, C. et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat. Commun. 6, 8236 (2015). doi: 10.1038/ncomms9236 |
| [16] | Li, X. Y. et al. All-fiber source of frequency- entangled photon pairs. Phys. Rev. A 79, 033817 (2009). doi: 10.1103/PhysRevA.79.033817 |
| [17] | Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337-4341 (1995). doi: 10.1103/PhysRevLett.75.4337 |
| [18] | Clark, A. S. et al. Heralded single-photon source in a Ⅲ-Ⅴ photonic crystal. Opt. Lett. 38, 649-651 (2013). doi: 10.1364/OL.38.000649 |
| [19] | Jin, R. B. et al. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser. Sci. Rep. 4, 7468 (2014). |
| [20] | Solntsev, A. S. & Sukhorukov, A. A. Path-entangled photon sources on nonlinear chips. Rev. n Phys. 2, 19-31 (2017). doi: 10.1016/j.revip.2016.11.003 |
| [21] | Rangarajan, R. et al. Engineering an ideal indistinguishable photon-pair source for optical quantum information processing. J. Mod. Opt. 58, 318-327 (2011). doi: 10.1080/09500340.2010.529515 |
| [22] | Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light: Sci. Appl. 6, e16249 (2017). http://www.nature.com/lsa/journal/v6/n5/abs/lsa2016249a.html |
| [23] | Śliwa, C. & Banaszek, K. Conditional preparation of maximal polarization entanglement. Phys. Rev. A 67, 030101(R) (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000003000004000023000001&idtype=cvips&gifs=Yes |
| [24] | Pittman, T. B. et al. Heralded two-photon entanglement from probabilistic quantum logic operations on multiple parametric down-conversion sources. IEEE J. Sel. Top. Quantum Electron. 9, 1478-1482 (2003). doi: 10.1109/JSTQE.2003.820916 |
| [25] | Barz, S. et al. Heralded generation of entangled photon pairs. Nat. Photonics 4, 553-556 (2010). doi: 10.1038/nphoton.2010.156 |
| [26] | Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020). http://www.researchgate.net/publication/343047719_Optical_frequency_combs_Coherently_uniting_the_electromagnetic_spectrum |
| [27] | Keller, U. Optical frequency combs from ultrafast solid-state and semiconductor lasers. Proc. SPIE 11460, https://doi.org/10.1117/12.2572134 (2020). |
| [28] | https://github.com/sutapag/TPE-Rydberg (2020). |
| [29] | Steinlechner, F. et al. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017). doi: 10.1038/ncomms15971 |
| [30] | Cozzolino, D. et al. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2, 1900038 (2019). doi: 10.1002/qute.201900038 |
| [31] | Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622-626 (2017). doi: 10.1038/nature22986 |
| [32] | Barreiro, J. T., Wei, T. C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282-286 (2008). doi: 10.1038/nphys919 |
| [33] | Walborn, S. P. Breaking the communication barrier. Nat. Phys. 4, 268-269 (2008). doi: 10.1038/nphys927 |
| [34] | Hu, X. M. et al. Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054506/ |
| [35] | Xie, Z. D. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photonics 9, 536-542 (2015). doi: 10.1038/nphoton.2015.110 |
| [36] | Hu, X. M. et al. Efficient generation of high-dimensional entanglement through multipath down-conversion. Phys. Rev. Lett. 125, 090503 (2020). doi: 10.1103/PhysRevLett.125.090503 |
| [37] | Roslund, J. et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics 8, 109-112 (2014). doi: 10.1038/nphoton.2013.340 |
| [38] | Bernhard, C. et al. Shaping frequency-entangled qudits. Phys. Rev. A 88, 032322 (2013). doi: 10.1103/PhysRevA.88.032322 |
| [39] | Steinlechner, F. et al. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017). doi: 10.1038/ncomms15971 |
| [40] | Hu, X. M. et al. Efficient distribution of high-dimensional entanglement through 11 km fiber. Optica 7, 738-743 (2020). doi: 10.1364/OPTICA.388773 |
| [41] | Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516-519 (2015). doi: 10.1038/nature14246 |
| [42] | Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nature Rev. Phys. 2, 365-381 (2020). doi: 10.1038/s42254-020-0193-5 |
| [43] | Sheng, Y. B. & Deng, F. G. Deterministic entanglement purification and complete nonlocal bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010). doi: 10.1103/PhysRevA.81.032307 |
| [44] | Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115-118 (2009). doi: 10.1038/nphys1183 |
| [45] | Paris-Mandoki, A. et al. Free-space quantum electrodynamics with a single Rydberg superatom. Phys. Rev. X 7, 041010 (2017). doi: 10.1103/PhysRevX.7.041010 |
| [46] | Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208-2211 (2000). doi: 10.1103/PhysRevLett.85.2208 |
| [47] | Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001). doi: 10.1103/PhysRevLett.87.037901 |
| [48] | Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313-2363 (2010). doi: 10.1103/RevModPhys.82.2313 |
| [49] | Guo, C. Y. et al. Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms. Phys. Rev. A 102, 042607 (2020). doi: 10.1103/PhysRevA.102.042607 |
| [50] | Su, S. L. et al. One-step implementation of the Rydberg-Rydberg-Interaction gate. Phys. Rev. A 93, 012306 (2016). doi: 10.1103/PhysRevA.93.012306 |
| [51] | Su, S. L. et al. Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A 95, 022319 (2017). doi: 10.1103/PhysRevA.95.022319 |
| [52] | Su, S. L. et al. One-step construction of the multiple-qubit Rydberg controlled-phase gate. Phys. Rev. A 98, 032306 (2018). doi: 10.1103/PhysRevA.98.032306 |
| [53] | Su, S. L. et al. Rydberg antiblockade regimes: dynamics and applications. EPL (Europhys. Lett. 131, 53001 (2020). |
| [54] | Rivera, N. et al. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263-269 (2016). doi: 10.1126/science.aaf6308 |
| [55] | Rivera, N. et al. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607-13612 (2017). doi: 10.1073/pnas.1713538114 |
| [56] | Ripka, F. et al. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science 362, 446-449 (2018). doi: 10.1126/science.aau1949 |
| [57] | Göppert-Mayer, M. Elementary processes with two quantum transitions. Annal. Physik 18, 466-479 (2009). doi: 10.1002/andp.200910358 |
| [58] | Cresser, J. D. et al. Lifetime of excited atomic states. Phys. Rev. A 33, 1677-1682 (1986). doi: 10.1103/PhysRevA.33.1677 |
| [59] | Florescu, V. Two-photon emissionn in the 3s → 1s and 3d → 1s transitions of hydrogenlike atoms. Phys. Rev. A 30, 2441-2448 (1984). doi: 10.1103/PhysRevA.30.2441 |
| [60] | Scheel, S. & Buhmann, S. Y. Macroscopic quantum electrodynamics—concepts and applications. Acta Phys. Slovaca 58, 675-809 (2008). http://www.degruyter.com/view/j/apsrt.2008.58.issue-5/v10155-010-0092-x/v10155-010-0092-x.xml |
| [61] | Sibalic, N. et al. ARC: an open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun. 220, 319-331 (2017). doi: 10.1016/j.cpc.2017.06.015 |
| [62] | Chluba, J. & Sunyaev, R. A. Two-photon transitions in hydrogen and cosmological recombination. Astron. Astrophys. 480, 629-645 (2008). doi: 10.1051/0004-6361:20077921 |
| [63] | Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681-685 (1946). doi: 10.1007%2F978-1-4615-1963-8_40 |
| [64] | Guerlin, C. et al. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010). doi: 10.1103/PhysRevA.82.053832 |
| [65] | Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233-236 (1981). doi: 10.1103/PhysRevLett.47.233 |
| [66] | Hulet, R. G., Hilfer, E. S. & Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137-2140 (1985). doi: 10.1103/PhysRevLett.55.2137 |
| [67] | Hunger, D. et al. A fiber Fabry-Perot cavity with high finesse. New J. Phys. 12, 065038 (2010). doi: 10.1088/1367-2630/12/6/065038 |
| [68] | Gallego, J. et al. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis. Appl. Phys. B 122, 47 (2016). doi: 10.1007/s00340-015-6281-z |
| [69] | Kiilerich, A. H. & Mølmer, K. Input-output theory with quantum pulses. Phys. Rev. Lett. 123, 123604 (2019). doi: 10.1103/PhysRevLett.123.123604 |
| [70] | Sheng, Y. B., Deng, F. G. & Long, G. L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010). doi: 10.1103/PhysRevA.82.032318 |
| [71] | Hu, X. M. et al. Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021). doi: 10.1103/PhysRevLett.126.010503 |
| [72] | Cantat-Moltrecht, T. et al. Long-lived circular Rydberg states of laser-cooled rubidium atoms in a cryostat. Phys. Rev. Res. 2, 022032(R) (2020). http://arxiv.org/abs/2002.02893v2 |
| [73] | Hood, C. J., Kimble, H. J. & Ye, J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A 64, 033804 (2001). doi: 10.1103/PhysRevA.64.033804 |
| [74] | Thorpe, M. J. et al. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express 13, 882-888 (2005). doi: 10.1364/OPEX.13.000882 |
| [75] | Xiang, X. et al. Quantification of nonlocal dispersion cancellation for finite frequency entanglement. Opt. Express 28, 17697-17707 (2020). doi: 10.1364/OE.390149 |
| [76] | Odele, O. D. et al. Tunable delay control of entangled photons based on dispersion cancellation. Opt. Express 23, 21857-21866 (2015). doi: 10.1364/OE.23.021857 |