[1] Tobin, W. Evolution of the foucault-secretan reflecting telescope. Journal of Astronomical History and Heritage 19, 106-184 (2016).
[2] Keck. Keck telescope (2022). at https://www.keckobservatory.orgURL.
[3] GTC. Gran telescopio canarias (2022). at http://www.gtc.iac.es URL.
[4] Kuhn, J. R. et al. Looking beyond 30m-class telescopes: the Colossus project. Proceedings of SPIE 9145, Ground-based and Airborne Telescopes V. Montréal, Canada: SPIE, 2014, 91451G.
[5] LIOM. Laboratory for innovation in opto-mechanics, 2022 (2022). at http://research.iac.es/proyecto/LIOM/pages/en/presentation.php URL.
[6] Kuhn, J. R. & Berdyugina, S. V. Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like colossus. International Journal of Astrobiology 14, 401-410 (2015).
[7] Berdyugina, S. V. & Kuhn, J. R. Surface imaging of proxima b and other exoplanets: albedo maps, Biosignatures, and Technosignatures. The Astronomical Journal 158, 246 (2019).
[8] GMT. Giant Magellan telescope (2022). at https://giantmagellan.org URL.
[9] TMT. Thirty meter telescope (2022). at https://www.tmt.org URL.
[10] ELT. The extremely large telescope (2022). at https://elt.eso.org URL.
[11] Cheetham, A. C. et al. Fizeau interferometric cophasing of segmented mirrors. Proceedings of SPIE 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. Montréal, Canada: SPIE, 2014, 914352.
[12] Kuhn, J. R. et al. The Exo-Life Finder Telescope (ELF): design and beam synthesis concepts. Proceedings of SPIE 10700, Ground-based and Airborne Telescopes VII. Austin, TX, USA: SPIE, 2018, 1070015.
[13] Kühn, J. et al. An H-band vector vortex coronagraph for the Subaru coronagraphic extreme adaptive optics system. Publications of the Astronomical Society of the Pacific 130, 035001 (2018).
[14] GSU. Chara (2022). at http://www.chara.gsu.edu URL.
[15] Chung, S. J., Miller, D. W. & De Weck, O. L. Design and implementation of sparse aperture imaging systems. Proceedings of SPIE 4849, Highly Innovative Space Telescope Concepts. Waikoloa, HI, USA: SPIE, 2002, 181-192.
[16] LBT. LBT Interferometer (LBTI) (2024). at https://www.as.arizona.edu/lbt-interferometer-lbti URL.
[17] Ertel, S. et al. The large binocular telescope interferometer as an ELT pathfinder. Adaptive Optics for Extremely Large Telescopes 7th Edition, ONERA, Jun 2023. Avignon, France: HAL, 2023.
[18] LIFE. Life mission (2024). at https://life-space-mission.com/ URL.
[19] Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355-359 (1995).
[20] Rebolo, R., Zapatero-Osorio, M. R. & Martın, E. L. Discovery of a brown dwarf in the Pleiades star cluster. Nature 377, 129-131 (1995).
[21] Nakajima, T. et al. Discovery of a cool brown dwarf. Nature 378, 463-465 (1995).
[22] Kumar, S. S. & Upton, E. K. L. M-R-L relation and contraction time scale for convective stars of low mass. The Astronomical Journal 68, 76 (1963).
[23] Gaia Collaboration. Gaia data release 1. Summary of the astrometric, photometric, and survey properties. Astronomy & Astrophysics 595, A2 (2016).
[24] Gaia Collaboration. Gaia data release 1. Open cluster astrometry: performance, limitations, and future prospects. Astronomy & Astrophysics 601, A19 (2017).
[25] Gaia Collaboration. Gaia data release 2. Summary of the contents and survey properties. Astronomy & Astrophysics 616, A1 (2018).
[26] Hatzes, A. P. et al. Evidence for a long-period planet orbiting ε Eridani. The Astrophysical Journal 544, L145-L148 (2000).
[27] Mawet, D. et al. Deep exploration of ϵ Eridani with Keck Ms-band vortex coronagraphy and radial velocities: mass and orbital parameters of the giant exoplanet. The Astronomical Journal 157, 33 (2019).
[28] Llop-Sayson, J. et al. Constraining the orbit and mass of epsilon eridani b with radial velocities, hipparcos IAD-gaia DR2 astrometry, and multiepoch vortex coronagraphy upper limits. The Astronomical Journal 162, 181 (2021).
[29] Tschudi, C. et al. SPHERE RefPlanets: search for ε Eridani b and warm dust. Astronomy & Astrophysics 687, A74 (2024).
[30] Gauza, B. et al. Discovery of a young planetary mass companion to the nearby M dwarf VHS J125601.92-125723.9. The Astrophysical Journal 804, 96 (2015).
[31] Stone, J. M. et al. Adaptive optics imaging of VHS 1256-1257: a low mass companion to a brown dwarf binary system. The Astrophysical Journal Letters 818, L12 (2016).
[32] Petrus, S. et al. The JWST early release science program for direct observations of exoplanetary systems. V. Do self-consistent atmospheric models represent JWST spectra? A showcase with VHS 1256-1257 b. The Astrophysical Journal Letters 966, L11 (2024).
[33] Lueber, A. et al. The retrieved atmospheric properties of the sub-stellar object VHS 1256 b from analyzing HST, VLT and JWST spectra. Print at https://doi.org/10.48550/arXiv.2409.08254 (2024).
[34] Duchêne, G. & Kraus, A. Stellar multiplicity. Annual Review of Astronomy and Astrophysics 51, 269-310 (2013).
[35] Merle, T. Dancing with the stars: a review on stellar multiplicity. arXiv preprint arXiv: 2311.09764 (2023).
[36] Lakshmanan, S. N. & Lambropoulos, J. C. Twyman effect in thin curved optics: effects of variable thickness and curvature. Applied Optics 60, 1780-1789 (2021).
[37] Kuhn, J. R. Non abrasive, thin glass shaping methods, systems for performing such methods, and thin glass produced by such methods. U.S. Patent No. 12,103,891 (2024).
[38] Romer, N., Kuhn, J. R. & Rolland, J. P. Curvature polishing for light-weight, thin reflective optics. Optical Fabrication and Testing 2023. Québec City, Canada: Optica Publishing Group, 2023.
[39] Thetpraphi, K. et al. Live-mirror shape correction technology operated through modified electroactive polymer actuators. Proceedings of SPIE 10966, Electroactive Polymer Actuators and Devices (EAPAD) XXI. Denver, CO, USA: SPIE, 2019, 109662U.
[40] Thetpraphi, K. et al. Advanced plasticized electroactive polymers actuators for active optical applications: live mirror. Advanced Engineering Materials 22, 1901540 (2020). doi: 10.1002/adem.201901540
[41] Thetpraphi, K. Development of electroactive polymer actuators for next generation mirror: Live-Mirror. PhD thesis, Universite de Lyon, Lyon, 2020.
[42] Thetpraphi, K. et al. Advanced 3D-printed EAP actuator applied to high precision large optical-quality surface fabrication: first results. Electroactive Polymer Actuators and Devices (EAPAD) XXII. 11375 (2020).
[43] Thetpraphi, K. et al. 3D-printed electroactive polymer force-actuator for large and high precise optical mirror applications. Additive Manufacturing 47, 102199 (2021). doi: 10.1016/j.addma.2021.102199
[44] Fuller. Tensegrity (2022). at https://www.bfi.org/about-fuller/big-ideas/tensegrity/ URL.
[45] Yang, S. & Sultan, C. Modeling of tensegrity-membrane systems. International Journal of Solids and Structures 82, 125-143 (2016). doi: 10.1016/j.ijsolstr.2015.09.012
[46] Nelson, J. E., Lubliner, J. & Mast, T. S. Telescope mirror supports: plate deflections on point supports. Proceedings of SPIE 0332, Advanced Technology Optical Telescopes I. Tucson, USA: SPIE, 1982, 212-228.
[47] Cheng, J. Q. The Principles of Astronomical Telescope Design. (New York: Springer, 2009).
[48] Por, E. H. et al. High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator. Proceedings of SPIE 10703, Adaptive Optics Systems VI. Austin, TX, USA: SPIE, 2018, 1070342.
[49] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA, USA: ICLR, 2015.
[50] Lin, J. Lightbeam: simulate light through weakly-guiding waveguides. Astrophysics Source Code Library, ascl-2102 (2021).
[51] Padrón-Brito, A., Marrero, N. & Kuhn, J. Co-phasing the distributed aperture of a Fizeau interferometer via photonic lanterns and machine learning. Proceedings of SPIE 13094, Ground-Based and Airborne Telescopes X. Yokohama, Japan: SPIE, 2024, 1309425.
[52] Graf, C. et al. Calibration and performances of the integrated Mach-Zehnder (iMZ) wavefront sensor for extreme adaptive optics. Proceedings of SPIE 12185, Adaptive Optics Systems VIII. Montréal, Canada: SPIE, 2022, 121852F.
[53] Kasting, J. F. et al. Remote life-detection criteria, habitable zone boundaries, and the frequency of earth-like planets around M and late K stars. Proceedings of the National Academy of Sciences of the United States of America 111, 12641-12646 (2014).