[1] Streibl, N. Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A 2, 121–127 (1985). doi: 10.1364/JOSAA.2.000121
[2] Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201 (2016). doi: 10.18287/JBPE16.02.020201
[3] Lim, J. et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Opt. Express 23, 16933–16948 (2015). doi: 10.1364/OE.23.016933
[4] Zhang, Y. B. et al. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis. Sci. Rep. 6, 28793 (2016). doi: 10.1038/srep28793
[5] Park, Y. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 13730–13735 (2008). doi: 10.1073/pnas.0806100105
[6] Park, Y. et al. Measurement of red blood cell mechanics during morphological changes. Proc. Natl Acad. Sci. USA 107, 6731–6736 (2010). doi: 10.1073/pnas.0909533107
[7] Oh, J. et al. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. Biomed. Opt. Express 11, 1257–1267 (2020). doi: 10.1364/BOE.377740
[8] Zhou, K. C. et al. Optical coherence refraction tomography. Nat. Photonics 13, 794–802 (2019). doi: 10.1038/s41566-019-0508-1
[9] Van Rooij, J. & Kalkman, J. Large-scale high-sensitivity optical diffraction tomography of zebrafish. Biomed. Opt. Express 10, 1782–1793 (2019). doi: 10.1364/BOE.10.001782
[10] Simon, B. et al. Tomographic diffractive microscopy with isotropic resolution. Optica 4, 460–463 (2017). doi: 10.1364/OPTICA.4.000460
[11] Kim, K., Yoon, J. & Park, Y. Large-scale optical diffraction tomography for inspection of optical plastic lenses. Opt. Lett. 41, 934–937 (2016). doi: 10.1364/OL.41.000934
[12] Merola, F. et al. Tomographic flow cytometry by digital holography. Light: Sci. Appl. 6, e16241 (2017). https://www.nature.com/articles/lsa2016241
[13] Schürmann, M. et al. Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography. J. Biophotonics 11, e201700145 (2018). doi: 10.1002/jbio.201700145
[14] Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986). doi: 10.1364/OL.11.000288
[15] Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002). doi: 10.1016/S0030-4018(02)01524-9
[16] Kim, K., Yoon, J. & Park, Y. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2, 343–346 (2015). doi: 10.1364/OPTICA.2.000343
[17] Habaza, M. et al. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers. Opt. Lett. 40, 1881–1884 (2015). doi: 10.1364/OL.40.001881
[18] Lin, Y. C. et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy. Opt. Lett. 42, 1321–1324 (2017). doi: 10.1364/OL.42.001321
[19] Vinoth, B. et al. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution. Sci. Rep. 8, 5943 (2018). doi: 10.1038/s41598-018-24408-w
[20] Mohanty, S. K., Uppal, A. & Gupta, P. K. Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis. Biotechnol. Lett. 26, 971–974 (2004). doi: 10.1023/B:BILE.0000030041.94322.71
[21] Rancourt-Grenier, S. et al. Dynamic deformation of red blood cell in Dual-trap Optical Tweezers. Opt. Express 18, 10462–10472 (2010). doi: 10.1364/OE.18.010462
[22] Kim, K. & Park, Y. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps. Nat. Commun. 8, 15340 (2017). doi: 10.1038/ncomms15340
[23] Jackson, J. D. Classical Electrodynamics. 3rd edn. (Wiley, 1999).
[24] Reitz, J. R., Milford, F. J. & Christy, R. W. Foundations of Electromagnetic Theory. 4th edn. (Addison-Wesley Publishing Company, 2008).
[25] Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x
[26] Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982). doi: 10.1364/JOSA.72.000156
[27] Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969). doi: 10.1016/0030-4018(69)90052-2
[28] Devaney, A. J. Inverse-scattering theory within the Rytov approximation. Opt. Lett. 6, 374–376 (1981). doi: 10.1364/OL.6.000374
[29] Yu, H. et al. Fourier-transform light scattering of individual colloidal clusters. Opt. Lett. 37, 2577–2579 (2012). doi: 10.1364/OL.37.002577
[30] Lim, J., Ayoub, A. B. & Psaltis, D. Three-dimensional tomography of red blood cells using deep learning. Adv. Photonics 2, 026001 (2020). doi: 10.1117/1.AP.2.2.026001
[31] Senyuk, B. et al. Topological colloids. Nature 493, 200–205 (2013). doi: 10.1038/nature11710
[32] Jung, J. et al. Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering. Opt. Express 26, 7701–7711 (2018). doi: 10.1364/OE.26.007701
[33] Sauter, A. et al. Real-time observation of nonclassical protein crystallization kinetics. J. Am. Chem. Soc. 137, 1485–1491 (2015). doi: 10.1021/ja510533x
[34] Yoon, J. et al. Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Sci. Rep. 7, 6654 (2017). doi: 10.1038/s41598-017-06311-y
[35] Bennet, M. et al. A bacteria-based remotely tunable photonic device. Adv. Opt. Mater. 5, 1600617 (2017). doi: 10.1002/adom.201600617
[36] Kim, K. et al. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express 21, 32269–32278 (2013). doi: 10.1364/OE.21.032269
[37] Kim, D. et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt. Lett. 44, 3178–3181 (2019). doi: 10.1364/OL.44.003178
[38] Lee, M., Shin, S. & Park, Y. Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique. Opt. Express 25, 27415–27430 (2017). doi: 10.1364/OE.25.027415
[39] Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015). doi: 10.1364/OPTICA.2.000517
[40] Soto, J. M., Rodrigo, J. A. & Alieva, T. Partially coherent illumination engineering for enhanced refractive index tomography. Opt. Lett. 43, 4699–4702 (2018). doi: 10.1364/OL.43.004699
[41] Chen, X. et al. Wolf phase tomography (WPT) of transparent structures using partially coherent illumination. Light: Sci. Appl. 9, 142 (2020). https://www.nature.com/articles/s41377-020-00379-4
[42] Baek, Y. & Park, Y. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics 1–7, (2021) https://doi.org/10.1038/s41566-021-00760-8.
[43] Fan, S. L. et al. Reconstructing complex refractive-index of multiply-scattering media by use of iterative optical diffraction tomography. Opt. Express 28, 6846–6858 (2020). doi: 10.1364/OE.380309
[44] Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science 322, 1857–1861 (2008). doi: 10.1126/science.1165758
[45] Lee, M. et al. Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells. eLife 9, e49023 (2020). doi: 10.7554/eLife.49023
[46] Zhang, Z. et al. Far-field diffraction microscopy at λ/10 resolution. Optica 3, 609–612 (2016). doi: 10.1364/OPTICA.3.000609
[47] Gerchberg, R. W. Super-resolution through error energy reduction. Opt. Acta 21, 709–720 (1974). doi: 10.1080/713818946
[48] Shin, S. et al. Active illumination using a digital micromirror device for quantitative phase imaging. Opt. Lett. 40, 5407–5410 (2015). doi: 10.1364/OL.40.005407
[49] Lee, K. et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Opt. Lett. 42, 999–1002 (2017). doi: 10.1364/OL.42.000999
[50] Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973). doi: 10.1364/AO.12.000555