[1] Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018). doi: 10.1038/s41586-018-0601-5
[2] Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013). doi: 10.1103/RevModPhys.85.299
[3] Zheng, W. et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008). doi: 10.1103/PhysRevLett.100.013905
[4] Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904
[5] Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008). doi: 10.1103/PhysRevA.78.033834
[6] Plotnik, Y. et al. Observation of unconventional edge states in 'photonic graphene'. Nat. Mater. 13, 57–62 (2014). doi: 10.1038/nmat3783
[7] Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015). doi: 10.1103/PhysRevLett.114.223901
[8] Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013). doi: 10.1038/nmat3520
[9] Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018). doi: 10.1126/science.aaq0327
[10] Parappurath, N. et al. Direct observation of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020). doi: 10.1126/sciadv.aaw4137
[11] Smirnova, D. et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 123, 103901 (2019). doi: 10.1103/PhysRevLett.123.103901
[12] Shalaev, M. I. et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019). doi: 10.1038/s41565-018-0297-6
[13] He, X. T. et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 10, 872 (2019). doi: 10.1038/s41467-019-08881-z
[14] Lu, L. , Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014). doi: 10.1038/nphoton.2014.248
[15] Xie, B. Y. et al. Photonics meets topology. Opt. Express 26, 24531–24550 (2018). doi: 10.1364/OE.26.024531
[16] Dubrovkin, A. M. et al. Near-field mapping of the edge mode of a topological valley slab waveguide at λ = 1.55 μm. Appl. Phys. Lett. 116, 191105 (2020).
[17] Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). doi: 10.1038/natrevmats.2016.55
[18] Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. N. J. Phys. 18, 25012 (2016). doi: 10.1088/1367-2630/18/2/025012
[19] Xiao, D. , Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). doi: 10.1103/PhysRevLett.99.236809
[20] Zak, J. Berry's phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989). doi: 10.1103/PhysRevLett.62.2747
[21] Cheng, X. J. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016). doi: 10.1038/nmat4573
[22] Gersen, H. et al. Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides. Phys. Rev. Lett. 94, 123901 (2005). doi: 10.1103/PhysRevLett.94.123901
[23] Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nat. Photon. 8, 919–926 (2014). doi: 10.1038/nphoton.2014.285
[24] Balistreri, M. L. M. et al. Local observations of phase singularities in optical fields in waveguide structures. Phys. Rev. Lett. 85, 294–297 (2000). doi: 10.1103/PhysRevLett.85.294
[25] Engelen, R. J. P. et al. Ultrafast evolution of photonic eigenstates in k-space. Nat. Phys. 3, 401–405 (2007). doi: 10.1038/nphys576
[26] Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009). doi: 10.1103/PhysRevLett.102.033902
[27] Ma, T. et al. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015). doi: 10.1103/PhysRevLett.114.127401
[28] Krauss, T. F. et al. Understanding the rich physics of light propagation in slow photonic crystal waveguides. Proceedings of SPIE 7612, Advances in Slow and Fast Light Ⅲ. (San Francisco: SPIE, 2010).
[29] Kuang, W. & O'Brien, J. D. Strategy for reducing the out-of-plane radiation loss in photonic crystal waveguides on high-index substrates. Conference on Lasers and Electro-Optics 2004. (San Francisco: OSA, 2004).
[30] Chow, E. et al. Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths. Opt. Lett. 26, 286–288 (2001).
[31] Chutinan, A. , Okano, M. & Noda, S. Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs. Appl. Phys. Lett. 80, 1698–1700 (2002). doi: 10.1063/1.1458529
[32] Johnson, S. & Joannopoulos, J. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express 8, 173–190 (2001). doi: 10.1364/OE.8.000173