[1] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017). doi: 10.1126/science.aah6442
[2] Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018). doi: 10.1038/s41567-018-0224-7
[3] Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018). doi: 10.1038/nature25156
[4] Xue, H. R. et al. Acoustic higher-order topological insulator on a Kagome lattice. Nat. Mater. 18, 108–112 (2019). doi: 10.1038/s41563-018-0251-x
[5] Ni, X. et al. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019). doi: 10.1038/s41563-018-0252-9
[6] Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–925 (2018). doi: 10.1038/s41567-018-0246-1
[7] Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photonics 13, 692–696 (2019). doi: 10.1038/s41566-019-0452-0
[8] Yuan, L. et al. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018). doi: 10.1364/OPTICA.5.001396
[9] Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019). doi: 10.1038/s42254-019-0045-3
[10] Jukić, D. & Buljan, H. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A 87, 013814 (2013). doi: 10.1103/PhysRevA.87.013814
[11] Boada, O. et al. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012). doi: 10.1103/PhysRevLett.108.133001
[12] Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019). doi: 10.1038/s41586-019-0943-7
[13] Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016). doi: 10.1364/OL.41.000741
[14] Ozawa, T. et al. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016). doi: 10.1103/PhysRevA.93.043827
[15] Luo, X. W. et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015). doi: 10.1038/ncomms8704
[16] Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015). doi: 10.1126/science.aaa8736
[17] Stuhl, B. K. et al. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015). doi: 10.1126/science.aaa8515
[18] Lin, Q. et al. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 7, 13731 (2016). doi: 10.1038/ncomms13731
[19] Lin, Q. et al. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension. Sci. Adv. 4, eaat2774 (2018). doi: 10.1126/sciadv.aat2774
[20] Yuan, L. et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B 97, 104105 (2018). doi: 10.1103/PhysRevB.97.104105
[21] Martin, I., Refael, G. & Halperin, B. Topological frequency conversion in strongly driven quantum systems. Phys. Rev. X 7, 041008 (2017).
[22] Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020). doi: 10.1126/science.aaz3071
[23] Yuan, L. et al. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions. Phys. Rev. Lett. 122, 083903 (2019). doi: 10.1103/PhysRevLett.122.083903
[24] Reimer, C. et al. High-dimensional frequency crystals and quantum walks in electro-optic microcombs. Preprint at 1909.01303 (2019).
[25] Spreeuw, R. J. C. et al. Classical realization of a strongly driven two-level system. Phys. Rev. Lett. 65, 2642–2645 (1990). doi: 10.1103/PhysRevLett.65.2642
[26] Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photonics 13, 36–40 (2019).
[27] Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979). doi: 10.1103/PhysRevLett.42.1698
[28] Majumdar, A. et al. Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule. Phys. Rev. B 86, 045315 (2012). doi: 10.1103/PhysRevB.86.045315
[29] Galbiati, M. et al. Polariton condensation in photonic molecules. Phys. Rev. Lett. 108, 126403 (2012). doi: 10.1103/PhysRevLett.108.126403
[30] Dutt, A. et al. Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett. 41, 223–226 (2016). doi: 10.1364/OL.41.000223
[31] Nakagawa, A., Ishii, S. & Baba, T. Photonic molecule laser composed of GaInAsP microdisks. Appl. Phys. Lett. 86, 041112 (2005). doi: 10.1063/1.1855388
[32] Dutt, A. et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. 10, 3122 (2019). doi: 10.1038/s41467-019-11117-9
[33] Yuan, L. & Fan, S. Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime. Phys. Rev. A 92, 053822 (2015). doi: 10.1103/PhysRevA.92.053822
[34] Minkov, M. & Savona, V. Haldane quantum Hall effect for light in a dynamically modulated array of resonators. Optica 3, 200–206 (2016). doi: 10.1364/OPTICA.3.000200
[35] Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236
[36] Dutt, A. et al. Experimental demonstration of dynamical input isolation in nonadiabatically modulated photonic cavities. ACS Photonics 6, 162–169 (2019). doi: 10.1021/acsphotonics.8b01310
[37] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017). doi: 10.1103/PhysRevB.96.245115
[38] Xie, B. Y. et al. Second-order photonic topological insulator with corner states. Phys. Rev. B 98, 205147 (2018). doi: 10.1103/PhysRevB.98.205147
[39] Benalcazar, W. A. & Cerjan, A. Bound states in the continuum of higher-order topological insulators. Phys. Rev. B 101, 161116(R) (2020).
[40] Ota, Y. et al. Photonic crystal nanocavity based on a topological corner state. Optica 6, 786–789 (2019). doi: 10.1364/OPTICA.6.000786
[41] Hafezi, M. et al. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013). doi: 10.1038/nphoton.2013.274
[42] Chu, S. T. et al. An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Photonics Technol. Lett. 11, 691–693 (1999). doi: 10.1109/68.766787
[43] Sherwood-Droz, N. & Lipson, M. Scalable 3D dense integration of photonics on bulk silicon. Opt. Express 19, 17758–17765 (2011). doi: 10.1364/OE.19.017758
[44] Grover, R. et al. Vertically coupled GaInAsP–InP microring resonators. Opt. Lett. 26, 506–508 (2001). doi: 10.1364/OL.26.000506
[45] Yanagase, Y. et al. Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter. J. Lightwave Technol. 20, 1525–1529 (2002). doi: 10.1109/JLT.2002.800296
[46] Tzuang, L. D. et al. High RF carrier frequency modulation in silicon resonators by coupling adjacent free-spectral-range modes. Opt. Lett. 39, 1799–1802 (2014). doi: 10.1364/OL.39.001799
[47] Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019). doi: 10.1038/s41586-019-1008-7
[48] Rueda, A. et al. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019). doi: 10.1038/s41586-019-1110-x
[49] Zhang, W. & Zhang, X. Photonic quadrupole topological phases in zero-dimensional cavity with synthetic dimensions. Preprint at 1906.02967 (2019).