[1] Liu, X. C., Bauer, S. & Velten, A. Analysis of feature visibility in non-line-of-sight measurements. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10132–10140 (IEEE, 2019).
[2] Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012). doi: 10.1038/ncomms1747
[3] O'Toole, M., Lindell, D. B. & Wetzstein, G. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555, 338–341 (2018). doi: 10.1038/nature25489
[4] Tsai, C. Y. et al. The geometry of first-returning photons for non-line-of-sight imaging. In Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2336–2344 (IEEE, 2017).
[5] Xin, S. M. et al. A theory of fermat paths for non-line-of-sight shape reconstruction. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2019).
[6] Lindell, D. B., Wetzstein, G. & O'Toole, M. Wave-based non-line-of-sight imaging using fast f-K migration. ACM Trans. Graph. 38, 116 (2019). doi: 10.1145/3306346.3322937
[7] Liu, X. C. et al. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature 572, 620–623 (2019). doi: 10.1038/s41586-019-1461-3
[8] Liu, X. C., Bauer, S. & Velten, A. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nat. Commun. 11, 1645 (2020). doi: 10.1038/s41467-020-15157-4
[9] Liu, X. C. & Velten, A. The role of wigner distribution function in non-line-of-sight imaging. In Proc. 2020 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2020).
[10] Tancik, M., Satat, G. & Raskar, R. Flash photography for data-driven hidden scene recovery. Preprint at arXiv: 1810.11710 (2018). https://www.media.mit.edu/publications/flash-photography-for-data-driven-hidden-scene-recovery/.
[11] Chen, W. Z. et al. Steady-state non-line-of-sight imaging. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6783–6792 (IEEE, 2019).
[12] Chen, W. Z. et al. Learned feature embeddings for non-line-of-sight imaging and recognition. ACM Trans. Graph. 39, 230 (2020). doi: 10.1145/3414685.3417825
[13] Chopite, J. G. et al. Deep non-line-of-sight reconstruction. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2020).
[14] Metzler, C. A. et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica 7, 63–71 (2020). doi: 10.1364/OPTICA.374026
[15] Buttafava, M. et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode. Opt. Express 23, 20997–21011 (2015). doi: 10.1364/OE.23.020997
[16] Saunders, C., Murray-Bruce, J. & Goyal, V. K. Computational periscopy with an ordinary digital camera. Nature 565, 472–475 (2019). doi: 10.1038/s41586-018-0868-6
[17] Pediredla, A., Dave, A. & Veeraraghavan, A. SNLOS: non-line-of-sight scanning through temporal focusing. In Proc. 2019 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2019).
[18] La Manna, M. et al. Non-line-of-sight-imaging using dynamic relay surfaces. Opt. Express 28, 5331–5339 (2020). doi: 10.1364/OE.383586
[19] Tanaka, K., Mukaigawa, Y. & Kadambi, A. Polarized non-line-of-sight imaging. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2133–2142 (IEEE, 2020).
[20] Metzler, C. A., Lindell, D. B. & Wetzstein, G. Keyhole imaging: non-line-of-sight imaging and tracking of moving objects along a single optical path. IEEE Trans. Comput. Imaging 7, 1–12 (2020). doi: 10.1109/TCI.2020.3046472
[21] Wu, C. et al. Non–line-of-sight imaging over 1.43 km. Proc. Natl Acad. Sci. USA 118, e2024468118 (2021).
[22] Ye, J. T. et al. Compressed sensing for active non-line-of-sight imaging. Opt. Express 29, 1749–1763 (2021). doi: 10.1364/OE.413774
[23] Arellano, V., Gutierrez, D. & Jarabo, A. Fast back-projection for non-line of sight reconstruction. In Proc. SIGGRAPH '17: Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH, 2017).
[24] Young, S. I. et al. Non-line-of-sight surface reconstruction using the directional light-cone transform. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1404–1413 (IEEE, 2020).
[25] Heide, F. et al. Non-line-of-sight imaging with partial occluders and surface normals. ACM Trans. Graph. 38, 22 (2019). doi: 10.1145/3269977
[26] Yilmaz, Ö. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data (Society of Exploration Geophysicists, 2001).
[27] Laurenzis, M. & Velten, A. Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing. J. Electron. Imaging 23, 063003 (2014). doi: 10.1117/1.JEI.23.6.063003
[28] Feng, X. H. & Gao, L. Improving non-line-of-sight image reconstruction with weighting factors. Opt. Lett. 45, 3921–3924 (2020). doi: 10.1364/OL.394742
[29] Thrampoulidis, C. et al. Exploiting occlusion in non-line-of-sight active imaging. IEEE Trans. Comput. Imaging 4, 419–431 (2018). doi: 10.1109/TCI.2018.2829599
[30] Ahn, B. et al. Convolutional approximations to the general non-line-of-sight imaging operator. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7888–7898 (IEEE, 2019).
[31] Tsai, C. Y., Sankaranarayanan, A. C. & Gkioulekas, I. Beyond volumetric albedo—a surface optimization framework for non-line-of-sight imaging. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1545–1555 (IEEE, 2019).
[32] Iseringhausen, J. & Hullin, M. B. Non-line-of-sight reconstruction using efficient transient rendering. ACM Trans. Graph. 39, 8 (2020).
[33] Lebrun, M. An analysis and implementation of the BM3D image denoising method. Image Process. Line 2, 175–213 (2012). doi: 10.5201/ipol.2012.l-bm3d
[34] Cai, J. F. et al. Data-driven tight frame construction and image denoising. Appl. Comput. Harmon. Anal. 37, 89–105 (2014). doi: 10.1016/j.acha.2013.10.001
[35] Dabov, K. et al. Image denoising with block-matching and 3D filtering. In Proc. SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning (SPIE, 2006).
[36] Galindo, M. et al. A dataset for benchmarking time-resolved non-line-of-sight imaging. In Proc. SIGGRAPH '19: Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH, 2019).
[37] Veach, E. & Guibas, L. J. Optimally combining sampling techniques for Monte Carlo rendering. In Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques 419–428 (ACM Press, 1995).
[38] Klein, J. et al. A quantitative platform for non-line-of-sight imaging problems. In Proc. British Machine Vision Conference (BMV C, 2018).
[39] Lebrun, M., Buades, A. & Morel, J. M. Implementation of the "Non-Local Bayes" (NL-Bayes) image denoising algorithm. Image Process. Line 3, 1–42 (2013). doi: 10.5201/ipol.2013.16
[40] Herlihy, M. et al. The Art of Multiprocessor Programming 2nd edn (Newnes, 2020).
[41] Goldstein, T. & Osher, S. The split bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009). doi: 10.1137/080725891