[1] |
Liu, X. C., Bauer, S. & Velten, A. Analysis of feature visibility in non-line-of-sight measurements. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10132–10140 (IEEE, 2019). |
[2] |
Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012). doi: 10.1038/ncomms1747 |
[3] |
O'Toole, M., Lindell, D. B. & Wetzstein, G. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555, 338–341 (2018). doi: 10.1038/nature25489 |
[4] |
Tsai, C. Y. et al. The geometry of first-returning photons for non-line-of-sight imaging. In Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2336–2344 (IEEE, 2017). |
[5] |
Xin, S. M. et al. A theory of fermat paths for non-line-of-sight shape reconstruction. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2019). |
[6] |
Lindell, D. B., Wetzstein, G. & O'Toole, M. Wave-based non-line-of-sight imaging using fast f-K migration. ACM Trans. Graph. 38, 116 (2019). doi: 10.1145/3306346.3322937 |
[7] |
Liu, X. C. et al. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature 572, 620–623 (2019). doi: 10.1038/s41586-019-1461-3 |
[8] |
Liu, X. C., Bauer, S. & Velten, A. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nat. Commun. 11, 1645 (2020). doi: 10.1038/s41467-020-15157-4 |
[9] |
Liu, X. C. & Velten, A. The role of wigner distribution function in non-line-of-sight imaging. In Proc. 2020 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2020). |
[10] |
Tancik, M., Satat, G. & Raskar, R. Flash photography for data-driven hidden scene recovery. Preprint at arXiv: 1810.11710 (2018). https://www.media.mit.edu/publications/flash-photography-for-data-driven-hidden-scene-recovery/. |
[11] |
Chen, W. Z. et al. Steady-state non-line-of-sight imaging. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6783–6792 (IEEE, 2019). |
[12] |
Chen, W. Z. et al. Learned feature embeddings for non-line-of-sight imaging and recognition. ACM Trans. Graph. 39, 230 (2020). doi: 10.1145/3414685.3417825 |
[13] |
Chopite, J. G. et al. Deep non-line-of-sight reconstruction. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2020). |
[14] |
Metzler, C. A. et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica 7, 63–71 (2020). doi: 10.1364/OPTICA.374026 |
[15] |
Buttafava, M. et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode. Opt. Express 23, 20997–21011 (2015). doi: 10.1364/OE.23.020997 |
[16] |
Saunders, C., Murray-Bruce, J. & Goyal, V. K. Computational periscopy with an ordinary digital camera. Nature 565, 472–475 (2019). doi: 10.1038/s41586-018-0868-6 |
[17] |
Pediredla, A., Dave, A. & Veeraraghavan, A. SNLOS: non-line-of-sight scanning through temporal focusing. In Proc. 2019 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2019). |
[18] |
La Manna, M. et al. Non-line-of-sight-imaging using dynamic relay surfaces. Opt. Express 28, 5331–5339 (2020). doi: 10.1364/OE.383586 |
[19] |
Tanaka, K., Mukaigawa, Y. & Kadambi, A. Polarized non-line-of-sight imaging. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2133–2142 (IEEE, 2020). |
[20] |
Metzler, C. A., Lindell, D. B. & Wetzstein, G. Keyhole imaging: non-line-of-sight imaging and tracking of moving objects along a single optical path. IEEE Trans. Comput. Imaging 7, 1–12 (2020). doi: 10.1109/TCI.2020.3046472 |
[21] |
Wu, C. et al. Non–line-of-sight imaging over 1.43 km. Proc. Natl Acad. Sci. USA 118, e2024468118 (2021). |
[22] |
Ye, J. T. et al. Compressed sensing for active non-line-of-sight imaging. Opt. Express 29, 1749–1763 (2021). doi: 10.1364/OE.413774 |
[23] |
Arellano, V., Gutierrez, D. & Jarabo, A. Fast back-projection for non-line of sight reconstruction. In Proc. SIGGRAPH '17: Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH, 2017). |
[24] |
Young, S. I. et al. Non-line-of-sight surface reconstruction using the directional light-cone transform. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1404–1413 (IEEE, 2020). |
[25] |
Heide, F. et al. Non-line-of-sight imaging with partial occluders and surface normals. ACM Trans. Graph. 38, 22 (2019). doi: 10.1145/3269977 |
[26] |
Yilmaz, Ö. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data (Society of Exploration Geophysicists, 2001). |
[27] |
Laurenzis, M. & Velten, A. Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing. J. Electron. Imaging 23, 063003 (2014). doi: 10.1117/1.JEI.23.6.063003 |
[28] |
Feng, X. H. & Gao, L. Improving non-line-of-sight image reconstruction with weighting factors. Opt. Lett. 45, 3921–3924 (2020). doi: 10.1364/OL.394742 |
[29] |
Thrampoulidis, C. et al. Exploiting occlusion in non-line-of-sight active imaging. IEEE Trans. Comput. Imaging 4, 419–431 (2018). doi: 10.1109/TCI.2018.2829599 |
[30] |
Ahn, B. et al. Convolutional approximations to the general non-line-of-sight imaging operator. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7888–7898 (IEEE, 2019). |
[31] |
Tsai, C. Y., Sankaranarayanan, A. C. & Gkioulekas, I. Beyond volumetric albedo—a surface optimization framework for non-line-of-sight imaging. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1545–1555 (IEEE, 2019). |
[32] |
Iseringhausen, J. & Hullin, M. B. Non-line-of-sight reconstruction using efficient transient rendering. ACM Trans. Graph. 39, 8 (2020). |
[33] |
Lebrun, M. An analysis and implementation of the BM3D image denoising method. Image Process. Line 2, 175–213 (2012). doi: 10.5201/ipol.2012.l-bm3d |
[34] |
Cai, J. F. et al. Data-driven tight frame construction and image denoising. Appl. Comput. Harmon. Anal. 37, 89–105 (2014). doi: 10.1016/j.acha.2013.10.001 |
[35] |
Dabov, K. et al. Image denoising with block-matching and 3D filtering. In Proc. SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning (SPIE, 2006). |
[36] |
Galindo, M. et al. A dataset for benchmarking time-resolved non-line-of-sight imaging. In Proc. SIGGRAPH '19: Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH, 2019). |
[37] |
Veach, E. & Guibas, L. J. Optimally combining sampling techniques for Monte Carlo rendering. In Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques 419–428 (ACM Press, 1995). |
[38] |
Klein, J. et al. A quantitative platform for non-line-of-sight imaging problems. In Proc. British Machine Vision Conference (BMV C, 2018). |
[39] |
Lebrun, M., Buades, A. & Morel, J. M. Implementation of the "Non-Local Bayes" (NL-Bayes) image denoising algorithm. Image Process. Line 3, 1–42 (2013). doi: 10.5201/ipol.2013.16 |
[40] |
Herlihy, M. et al. The Art of Multiprocessor Programming 2nd edn (Newnes, 2020). |
[41] |
Goldstein, T. & Osher, S. The split bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009). doi: 10.1137/080725891 |