[1] Goodman, J. W. Statistical Optics. 2nd edn. (Hoboken: John Wiley & Sons, Inc., 2015), 333-414.
[2] Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications. 2nd edn. (Bellingham: SPIE Press, 2020).
[3] McKechnie, T. S. Light propagation through the atmosphere and the properties of images formed by large ground-based telescopes. Journal of the Optical Society of America A 8, 346-365 (1991). doi: 10.1364/JOSAA.8.000346
[4] Tuchin, V. V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. 3rd edn. (Bellingham: SPIE Press, 2015).
[5] Mosk, A. P. et al. Controlling waves in space and time for imaging and focusing in complex media. Nature Photonics 6, 283-292 (2012). doi: 10.1038/nphoton.2012.88
[6] Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Current Applied Physics 15, 632-641 (2015). doi: 10.1016/j.cap.2015.02.015
[7] Takeda, M. et al. Holographic correloscopy − Unconventional holographic techniques for imaging a three-dimensional object through an opaque diffuser or via a scattering wall: A review. IEEE Transactions on Industrial Informatics 12, 1631-1640 (2016). doi: 10.1109/TII.2015.2503641
[8] Rosen, J. et al. Roadmap on Chaos Inspired Imaging Technologies. Applied Physical B 128, 1-26 (2022). doi: 10.1007/s00340-021-07729-z
[9] Gibson, A. P., Hebden, J. C. & Arridge, S. R. Recent advances in diffuse optical imaging. Physics in Medicine & Biology 50, R1-R43 (2005).
[10] Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991). doi: 10.1126/science.1957169
[11] Leith, E. N. et al. Imaging through scattering media using spatial incoherence techniques. Optics Letters 16, 1820-1822 (1991). doi: 10.1364/OL.16.001820
[12] Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Communications 3, 745 (2012). doi: 10.1038/ncomms1747
[13] Duguay, M. A. & Mattick, A. T. Ultrahigh speed photography of picosecond light pulses and echoes. Applied Optics 10, 2162-2170 (1971). doi: 10.1364/AO.10.002162
[14] Yoo, K. M., Xing, Q. R. & Alfano, R. R. Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating. Optics Letters 16, 1019-1021 (1991). doi: 10.1364/OL.16.001019
[15] Hebden, J. C., Kruger, R. A. & Wong, K. S. Time resolved imaging through a highly scattering medium. Applied Optics 30, 788-794 (1991). doi: 10.1364/AO.30.000788
[16] Toida, M. et al. Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method. Applied Physics B 52, 391-394 (1991). doi: 10.1007/BF00325156
[17] Abramson, N. H. & Spears, K. G. Single pulse light-in-flight recording by holography. Applied Optics 28, 1834-1841 (1989). doi: 10.1364/AO.28.001834
[18] Leith, E. et al. Imaging through scattering media with holography. Journal of the Optical Society of America A 9, 1148-1153 (1992). doi: 10.1364/JOSAA.9.001148
[19] Indebetouw, G. & Klysubun, P. Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography. Optics Letters 25, 212-214 (2000). doi: 10.1364/OL.25.000212
[20] Li, S. P. & Zhong, J. G. Dynamic imaging through turbid media based on digital holography. Journal of the Optical Society of America A 31, 480-486 (2014). doi: 10.1364/JOSAA.31.000480
[21] Stetson, K. A. Holographic fog penetration. Journal of the Optical Society of America 57, 1060-1061 (1967). doi: 10.1364/JOSA.57.001060
[22] Paturzo, M. et al. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography. Lab on a Chip 12, 3073-3076 (2012). doi: 10.1039/c2lc40114b
[23] Pircher, M. & Zawadzki, R. J. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. Biomedical Optics Express 8, 2536-2562 (2017). doi: 10.1364/BOE.8.002536
[24] Roddier, F. Adaptive Optics in Astronomy. (London: Cambridge University Press, 1999).
[25] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Optics Letters 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309
[26] Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photonics 6, 549-553 (2012). doi: 10.1038/nphoton.2012.150
[27] Béchet, C. Overview of multi-conjugate adaptive optics reconstructors. Proceedings of SPIE 10703, Adaptive Optics Systems VI. Austin: SPIE, 2018, 107031B. doi: 10.1117/12.2314397
[28] Freund, I., Rosenbluh, M. & Feng, S. C. Memory effects in propagation of optical waves through disordered media. Physical Review Letters 61, 2328-2332 (1988). doi: 10.1103/PhysRevLett.61.2328
[29] Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1-9 (2018). doi: 10.1364/OPTICA.5.000001
[30] Liu, H. Y. et al. 3D imaging in volumetric scattering media using phase-space measurements. Optics Express 23, 14461-14471 (2015). doi: 10.1364/OE.23.014461
[31] Tajahuerce, E. et al. Image transmission through dynamic scattering media by single-pixel photodetection. Optics Express 22, 16945-16955 (2014). doi: 10.1364/OE.22.016945
[32] Xiao, Y., Zhou, L. N. & Chen, W. Direct single-step measurement of Hadamard spectrum using single-pixel optical detection. IEEE Photonics Technology Letters 31, 845-848 (2019). doi: 10.1109/LPT.2019.2910172
[33] Horisaki, R., Takagi, R. & Tanida, J. Learning-based imaging through scattering media. Optics Express 24, 13738-13743 (2016). doi: 10.1364/OE.24.013738
[34] Lyu, M. et al. Learning-based lensless imaging through optically thick scattering media. Advanced Photonics 1, 036002 (2019). doi: 10.1117/1.AP.1.3.036002
[35] Li, S. et al. Imaging through glass diffusers using densely connected convolutional networks. Optica 5, 803-813 (2018). doi: 10.1364/OPTICA.5.000803
[36] Kogelnik, H. B.S.T.J. briefs: Holographic image projection through inhomogeneous media. The Bell System Technical Journal 44, 2451-2455 (1965). doi: 10.1002/j.1538-7305.1965.tb04155.x
[37] Leith, E. N. & Upatnieks, J. Holographic imagery through diffusing media. Journal of the Optical Society of America 56, 523 (1966). doi: 10.1364/JOSA.56.000523
[38] Yaqoob, Z. et al. Optical phase conjugation for turbidity suppression in biological samples. Nature Photonics 2, 110-115 (2008). doi: 10.1038/nphoton.2007.297
[39] Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Optics Express 18, 3444-3455 (2010). doi: 10.1364/OE.18.003444
[40] Hillman, T. R. et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media. Scientific Reports 3, 1909 (2013). doi: 10.1038/srep01909
[41] Kogelnik, H. & Pennington, K. S. Holographic imaging through a random medium. Journal of the Optical Society of America 58, 273-274 (1968). doi: 10.1364/JOSA.58.000273
[42] Goodman, J. W. et al. Wavefront-reconstruction imaging through random media. Applied Physics Letters 8, 311-313 (1966). doi: 10.1063/1.1754453
[43] Goodman, J. W. et al. Experiments in long-distance holographic imagery. Applied Optics 8, 1581-1586 (1969). doi: 10.1364/AO.8.001581
[44] Singh, A. K. et al. Looking through a diffuser and around an opaque surface: a holographic approach. Optics Express 22, 7694-7701 (2014). doi: 10.1364/OE.22.007694
[45] Kodama, S. et al. Three-dimensional microscopic imaging through scattering media based on in-line phase-shift digital holography. Applied Optics 58, G345-G350 (2019). doi: 10.1364/AO.58.00G345
[46] Kodama, S. et al. Three-dimensional imaging through thick phase-fluctuating medium based on phase-shift digital holography with two adjacent light sources for common-path geometry. OSA Imaging and Applied Optics Congress 2021. Washington: Optical Society of America, 2021.
[47] Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232-234 (2012). doi: 10.1038/nature11578
[48] Katz, O. et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photonics 8, 784-790 (2014). doi: 10.1038/nphoton.2014.189
[49] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[50] Singh, A. K. et al. Exploiting scattering media for exploring 3D objects. Light: Science & Applications 6, e16219 (2017). doi: 10.1038/lsa.2016.219
[51] Freund, I. Looking through walls and around corners. Physica A: Statistical Mechanics and its Applications 168, 49-65 (1990). doi: 10.1016/0378-4371(90)90357-X
[52] Singh, A. K. et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution. Scientific Reports 7, 10687 (2017). doi: 10.1038/s41598-017-10767-3
[53] Takeda, M. et al. Spatial statistical optics and spatial correlation holography: a review. Optical Review 21, 849-864 (2014). doi: 10.1007/s10043-014-0138-2
[54] Naik, D. N. et al. Real-time coherence holography. Optics Express 18, 13782-13787 (2010). doi: 10.1364/OE.18.013782
[55] Takeda, M. et al. Coherence holography. Optics Express 13, 9629-9635 (2005). doi: 10.1364/OPEX.13.009629
[56] Takeda, M. Towards happy marriage between optics/photonics and artificial intelligence: A review with a historical perspective. Proceedings of SPIE 11142 Optical Technology and Measurement for Industrial Applications Conference Yokohama: SPIE 1114201 (2019).
[57] Ohta, M. et al. 3D imaging through a highly heterogeneous double-composite random medium by common-path phase-shift digital holography. Optics Letters 47, 1170-1173 (2022). doi: 10.1364/OL.451167