| [1] | Chen, W., Javidi, B. & Chen, X. D. Advances in optical security systems. Advances in Optics and Photonics 6, 120-155 (2014). doi: 10.1364/AOP.6.000120 |
| [2] | Liu, H, L. et al. Tunable resonator-upconverted emission (TRUE) color printing and applications in optical security. Advanced Materials 31, 1807900 (2019). doi: 10.1002/adma.201807900 |
| [3] | Qu, G. Y. et al. Reprogrammable meta-hologram for optical encryption. Nature Communications 11, 5484 (2020). doi: 10.1038/s41467-020-19312-9 |
| [4] | Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Letters 14, 4023-4029 (2014). doi: 10.1021/nl501460x |
| [5] | Kristensen, A. et al. Plasmonic colour generation. Nature Reviews Materials 2, 16088 (2017). |
| [6] | Silvennoinen, M. et al. Parallel femtosecond laser ablation with individually controlled intensity. Optics Express 22, 2603-2608 (2014). doi: 10.1364/OE.22.002603 |
| [7] | Huang, K. et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nature Communications 6, 7059 (2015). doi: 10.1038/ncomms8059 |
| [8] | Butt, H. et al. Carbon nanotube based high resolution holograms. Advanced Materials 24, OP331-OP336 (2012). |
| [9] | Hu, D. J. et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy. ACS Nano 12, 9233-9239 (2018). doi: 10.1021/acsnano.8b03964 |
| [10] | Li, Z. B., Clark, A. W. & Cooper, J. M. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492-498 (2016). doi: 10.1021/acsnano.5b05411 |
| [11] | Nagasaki, Y., Suzuki, M. & Takahara, J. All-dielectric dual-color pixel with subwavelength resolution. Nano Letters 17, 7500-7506 (2017). doi: 10.1021/acs.nanolett.7b03421 |
| [12] | Zhou, H. Q. et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano 14, 5553-5559 (2020). doi: 10.1021/acsnano.9b09814 |
| [13] | Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nature Communications 6, 6984 (2015). doi: 10.1038/ncomms7984 |
| [14] | Li, J. X. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Science Advances 4, eaar6768 (2018). doi: 10.1126/sciadv.aar6768 |
| [15] | Deng, L. G. et al. Malus-metasurface-assisted polarization multiplexing. Light: Science & Applications 9, 101 (2020). |
| [16] | Yoon, G. et al. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano 12, 6421-6428 (2018). |
| [17] | Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nature Communications 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5 |
| [18] | Wei, Q. S. et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Letters 19, 8964-8971 (2019). doi: 10.1021/acs.nanolett.9b03957 |
| [19] | Luo, X. H. et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Advanced Optical Materials 8, 1902020 (2020). doi: 10.1002/adom.201902020 |
| [20] | Jin, L. et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms. Nano Letters 18, 8016-8024 (2018). doi: 10.1021/acs.nanolett.8b04246 |
| [21] | Jin, L. et al. Dielectric multi-momentum meta-transformer in the visible. Nature Communications 10, 4789 (2019). doi: 10.1038/s41467-019-12637-0 |
| [22] | Ren, H. R. et al. Metasurface orbital angular momentum holography. Nature Communications 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1 |
| [23] | Ren, H. R. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology 15, 948-955 (2020). doi: 10.1038/s41565-020-0768-4 |
| [24] | Huang, L. L., Zhang, S. & Zentgraf, T. Metasurface holography: from fundamentals to applications. Nanophotonics 7, 1169-1190 (2018). doi: 10.1515/nanoph-2017-0118 |
| [25] | Gromyko, D. et al. Unidirectional chiral emission via twisted bi-layer metasurfaces. Nature Communications 15, 9804 (2024). doi: 10.1038/s41467-024-54262-6 |
| [26] | Shi, T. et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nature Communications 13, 4111 (2022). doi: 10.1038/s41467-022-31877-1 |
| [27] | Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Letters 19, 8673-8682 (2019). doi: 10.1021/acs.nanolett.9b03333 |
| [28] | She, A. et al. Large area metalenses: design, characterization, and mass manufacturing. Optics Express 26, 1573-1585 (2018). doi: 10.1364/OE.26.001573 |
| [29] | Leitis, A. et al. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Advanced Materials 33, 2102232 (2021). doi: 10.1002/adma.202102232 |
| [30] | Kim, J. et al. Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible. Nature Materials 22, 474-481 (2023). doi: 10.1038/s41563-023-01485-5 |
| [31] | Seong, J. et al. Cost-effective and environmentally friendly mass manufacturing of optical metasurfaces towards practical applications and commercialization. International Journal of Precision Engineering and Manufacturing-Green Technology 11, 685-706 (2024). doi: 10.1007/s40684-023-00580-x |
| [32] | Yoon, G. et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications 11, 2268 (2020). doi: 10.1038/s41467-020-16136-5 |
| [33] | Kim, J. et al. 8″ wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Materials Today 73, 9-15 (2024). |
| [34] | Vorobyev, A. Y. & Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser & Photonics Reviews 7, 385-407 (2013). |
| [35] | Jiang, L. et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science & Applications 7, 17134 (2018). |
| [36] | Li, Z. H. et al. Shaped femtosecond laser-regulated deposition sites of galvanic replacement for simple preparation of large-area controllable noble metal nanoparticles. Applied Surface Science 579, 152123 (2022). doi: 10.1016/j.apsusc.2021.152123 |
| [37] | Ma, Z. C. et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 2, 1700413 (2018). doi: 10.1002/smtd.201700413 |
| [38] | Zhang, Y. N. et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horizons 4, 601-609 (2019). doi: 10.1039/C9NH00003H |
| [39] | Lim, K. T. P. et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nature Communications 10, 25 (2019). doi: 10.1038/s41467-018-07808-4 |
| [40] | Wu, D. et al. Temperature-regulated bidirectional capillary force self-assembly of femtosecond laser printed micropillars for switchable chiral microstructures. ACS Nano 17, 12820-12828 (2023). doi: 10.1021/acsnano.3c04181 |
| [41] | Wang, A. D., Das, A. & Grojo, D. Ultrafast laser writing deep inside silicon with THz-repetition-rate trains of pulses. Research 2020, 8149764 (2020). |
| [42] | Sohn, I. B. et al. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property. Applied Surface Science 479, 375-385 (2019). doi: 10.1016/j.apsusc.2019.02.083 |
| [43] | Wang, Z. P. et al. Thermally reconfigurable hologram fabricated by spatially modulated femtosecond pulses on a heat-shrinkable shape memory polymer for holographic multiplexing. ACS Applied Materials & Interfaces 13, 51736-51745 (2021). |
| [44] | Jesacher, A. & Booth, M. J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Optics Express 18, 21090-21099 (2010). doi: 10.1364/OE.18.021090 |
| [45] | Salter, P. S. et al. Exploring the depth range for three-dimensional laser machining with aberration correction. Optics Express 22, 17644-17656 (2014). doi: 10.1364/OE.22.017644 |
| [46] | Liu, H. et al. Switchable all-dielectric metasurfaces for full-color reflective display. Advanced Optical Materials 7, 1801639 (2019). doi: 10.1002/adom.201801639 |
| [47] | Sun, S. et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano 12, 2151-2159 (2018). doi: 10.1021/acsnano.7b07121 |
| [48] | Hu, Y. L. et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Advanced Optical Materials 6, 1701299 (2018). doi: 10.1002/adom.201701299 |
| [49] | Li, Z. et al. Actively switchable beam-steering via hydrophilic/hydrophobic-selective design of water-immersed metasurface. Advanced Optical Materials 9, 2100297 (2021). doi: 10.1002/adom.202100297 |
| [50] | Wang, Z. K. et al. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation. Applied Physics Letters 95, 111110 (2009). doi: 10.1063/1.3232212 |
| [51] | De Marco, C. et al. Surface properties of femtosecond laser ablated PMMA. ACS Applied Materials & Interfaces 2, 2377-2384 (2010). |