[1] Shao, Z. Z. & Vollrath, F. Materials: surprising strength of silkworm silk. Nature 418, 741 (2002). doi: 10.1038/418741a
[2] Zhang, J., Rajkhowa, R., Li, J. L., Liu, X. Y. & Wang, X. G. Silkworm cocoon as natural material and structure for thermal insulation. Mater. Des. 49, 842–849 (2013). doi: 10.1016/j.matdes.2013.02.006
[3] Hieber, C. S. The "insulation" layer in the cocoons of Argiope aurantia (Araneae: Araneidae). J. Therm. Biol. 10, 171–175 (1985). doi: 10.1016/0306-4565(85)90023-3
[4] Kaur, J. et al. Photoprotection by silk cocoons. Biomacromolecules 14, 3660–3667 (2013). doi: 10.1021/bm401023h
[5] Zhang, J. et al. Natural and highly protective composite structures – wild silkworm cocoons. Compos. Commun. 4, 1–4 (2017). doi: 10.1016/j.coco.2017.02.005
[6] Altman, G. H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003). doi: 10.1016/S0142-9612(02)00353-8
[7] Omenetto, F. G. & Kaplan, D. L. A new route for silk. Nat. Photonics 2, 641–643 (2008). doi: 10.1038/nphoton.2008.207
[8] Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010). doi: 10.1126/science.1188936
[9] Huby, N. et al. Native spider silk as a biological optical fiber. Appl. Phys. Lett. 102, 123702 (2013). doi: 10.1063/1.4798552
[10] Reddy, N., Jiang, Q. R. & Yang, Y. Q. Biocompatible natural silk fibers from Argema mittrei. J. Biobased Mater. Bioenergy 6, 558–563 (2012). doi: 10.1166/jbmb.2012.1255
[11] Jolly, A., Oberle, P. & Albignac, R. Key Environments: Madagascar (Elsevier, Amsterdam, 1984).
[12] Burresi, M. et al. Bright-white beetle scales optimise multiple scattering of light. Sci. Rep. 4, 6075 (2014). doi: 10.1038/srep06075
[13] Cortese, L. et al. Anisotropic light transport in white beetle scales. Adv. Opt. Mater. 3, 1337–1341 (2015). doi: 10.1002/adom.201500173
[14] Wilts, B. D., et al. Evolutionary-optimized photonic network structure in white beetle wing scales. Adv. Mater. (2017). https://doi.org/10.1002/adma.201702057
[15] Stavenga, D. G., Stowe, S., Siebke, K., Zeil, J. & Arikawa, K. Butterfly wing colours: scale beads make white pierid wings brighter. Proc. R. Soc. B Biol. Sci. 271, 1577–1584 (2004). doi: 10.1098/rspb.2004.2781
[16] Raman, A. P., Anoma, M. A., Zhu, L. X., Rephaeli, E. & Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). doi: 10.1038/nature13883
[17] Shi, N. N. et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015). doi: 10.1126/science.aab3564
[18] Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). doi: 10.1126/science.aaf5471
[19] Tong, J. K. et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015). doi: 10.1021/acsphotonics.5b00140
[20] Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007). doi: 10.1038/nature05623
[21] De Raedt, H., Lagendijk, A. & De Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1989). doi: 10.1103/PhysRevLett.62.47
[22] Leonetti, M., Karbasi, S., Mafi, A. & Conti, C. Light focusing in the Anderson regime. Nat. Commun. 5, 4534 (2014). doi: 10.1038/ncomms5534
[23] Leonetti, M., Karbasi, S., Mafi, A., Delre, E. & Conti, C. Secure information transport by transverse localization of light. Sci. Rep. 6, 29918 (2016). doi: 10.1038/srep29918
[24] Karbasi, S. et al. Observation of transverse Anderson localization in an optical fiber. Opt. Lett. 37, 2304–2306 (2012). doi: 10.1364/OL.37.002304
[25] Abaie, B. et al. Random lasing in an Anderson localizing optical fiber. Light Sci. Appl. 6, e17041 (2017). doi: 10.1038/lsa.2017.41
[26] Karbasi, S. et al. Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nat. Commun. 5, 3362 (2014). doi: 10.1038/ncomms4362
[27] Karbasi, S. et al. Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers. Opt. Express 20, 18692–18706 (2012). doi: 10.1364/OE.20.018692
[28] Mondal, M., Trivedy, K. & Kumar, S. N. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn. - a review. Casp. J. Environ. Sci. 5, 63–76 (2007).
[29] Boulet-Audet, M., Vollrath, F. & Holland, C. Identification and classification of silks using infrared spectroscopy. J. Exp. Biol. 218, 3138–3149 (2015). doi: 10.1242/jeb.128306
[30] Howell, J. R., Pinar Menguc, M. & Siegel, R. Thermal Radiation Heat Transfer 5th edn (CRC Press, Boca Raton, 2010).
[31] Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011). doi: 10.1038/nprot.2011.379
[32] Perotto, G. et al. The optical properties of regenerated silk fibroin films obtained from different sources. Appl. Phys. Lett. 111, 103702 (2017). doi: 10.1063/1.4998950
[33] Zhou, G. Q., Shao, Z. Z., Knight, D. P., Yan, J. P. & Chen, X. Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv. Mater. 21, 366–370 (2009). doi: 10.1002/adma.200800582
[34] Yan, J. P., Zhou, G. Q., Knight, D. P., Shao, Z. Z. & Chen, X. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters. Biomacromolecules 11, 1–5 (2009). doi: 10.1021/bm900840h
[35] Zhang, X. M., Vanden Berghe, I. & Wyeth, P. Heat and moisture promoted deterioration of raw silk estimated by amino acid analysis. J. Cult. Herit. 12, 408–411 (2011). doi: 10.1016/j.culher.2011.03.002
[36] Lai, W. L. & Goh, K. L. Consequences of ultra-violet irradiation on the mechanical properties of spider silk. J. Funct. Biomater. 6, 901–916 (2015). doi: 10.3390/jfb6030901
[37] Inderherbergh, J. Polyvinylidene fluoride (PVDF) appearance, general properties and processing. Ferroelectrics 115, 295–302 (1991). doi: 10.1080/00150193.1991.11876614
[38] Bottino, A., Camera-Roda, G., Capannelli, G. & Munari, S. The formation of microporous polyvinylidene difluoride membranes by phase separation. J. Memb. Sci. 57, 1–20 (1991). doi: 10.1016/S0376-7388(00)81159-X
[39] Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006). doi: 10.1103/PhysRevLett.96.063904
[40] Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979). doi: 10.1103/PhysRevLett.42.673
[41] Zhao, J., et al. Image transport through silica-air random core optical fiber. In Conference on Lasers and Electro-Optics, paper JTu5A.91 (Optical Society of America, San Jose, 2017).
[42] Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018). doi: 10.1038/s41467-017-02500-5
[43] Freddi, G., Mossotti, R. & Innocenti, R. Degumming of silk fabric with several proteases. J. Biotechnol. 106, 101–112 (2003). doi: 10.1016/j.jbiotec.2003.09.006