[1] Wu, S. M. et al. Molecular junctions based on aromatic coupling. Nature Nanotechnology 3, 569-574 (2008). doi: 10.1038/nnano.2008.237
[2] Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nature Nanotechnology 8, 399-410 (2013). doi: 10.1038/nnano.2013.91
[3] Frisenda, R. & van der Zant, H. S. J. Transition from strong to weak electronic coupling in a single-molecule junction. Physical Review Letters 117, 126804 (2016). doi: 10.1103/PhysRevLett.117.126804
[4] Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384-1389 (2003). doi: 10.1126/science.1081572
[5] Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189-195 (1992). doi: 10.1126/science.257.5067.189
[6] Nie, S. M. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102-1106 (1997). doi: 10.1126/science.275.5303.1102
[7] Pettinger, B. et al. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters 92, 096101 (2004). doi: 10.1103/PhysRevLett.92.096101
[8] Saikin, S. K. et al. On the chemical bonding effects in the Raman response: benzenethiol adsorbed on silver clusters. Physical Chemistry Chemical Physics 11, 9401-9411 (2009). doi: 10.1039/b906885f
[9] Fischer, U. C. & Pohl, D. W. Observation of single-particle plasmons by near-field optical microscopy. Physical Review Letters 62, 458-461 (1989). doi: 10.1103/PhysRevLett.62.458
[10] Claridge, S. A., Schwartz, J. J. & Weiss, P. S. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano 5, 693-729 (2011). doi: 10.1021/nn103298x
[11] Cocker, T. L. et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263-267 (2016). doi: 10.1038/nature19816
[12] Nguyen, H. A. et al. STM imaging of localized surface plasmons on individual gold nanoislands. The Journal of Physical Chemistry Letters 9, 1970-1976 (2018).
[13] Wallum, A., Nguyen, H. A. & Gruebele, M. Excited-state imaging of single particles on the subnanometer scale. Annual Review of Physical Chemistry 71, 415-433 (2020). doi: 10.1146/annurev-physchem-071119-040108
[14] Zhang, R. et al. Chemical mapping of a single molecule by Plasmon-enhanced Raman scattering. Nature 498, 82-86 (2013). doi: 10.1038/nature12151
[15] Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nature Photonics 8, 650-656 (2014). doi: 10.1038/nphoton.2014.143
[16] Gerster, D. et al. Photocurrent of a single photosynthetic protein. Nature Nanotechnology 7, 673-676 (2012). doi: 10.1038/nnano.2012.165
[17] Bi, H. et al. Voltage-driven conformational switching with distinct Raman signature in a single-molecule junction. Journal of the American Chemical Society 140, 4835-4840 (2018). doi: 10.1021/jacs.7b12818
[18] Kharintsev, S. S. et al. Experimental evidence for axial anisotropy beyond the diffraction limit induced with a bias voltage plasmonic nanoantenna and longitudinal optical near-fields in photoreactive polymer thin films. ACS Photonics 1, 1025-1032 (2014). doi: 10.1021/ph5002318
[19] Saikin, S. K. et al. Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates. The Journal of Physical Chemistry Letters 1, 2740-2746 (2010). doi: 10.1021/jz1008714
[20] Kharintsev, S. S. et al. Near-field Raman dichroism of azo-polymers exposed to nanoscale dc electrical and optical poling. Nanoscale 8, 19867-19875 (2016). doi: 10.1039/C6NR07508H
[21] Pozzi, E. A. et al. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chemical Reviews 117, 4961-4982 (2017). doi: 10.1021/acs.chemrev.6b00343
[22] Pozzi, E. A. et al. Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale. ACS Nano 7, 885-888 (2013). doi: 10.1021/nn400560t
[23] Zhao, Z. K. et al. Shaping the atomic-scale geometries of electrodes to control optical and electrical performance of molecular devices. Small 14, 1703815 (2018). doi: 10.1002/smll.201703815
[24] Wang, M. N. et al. Plasmonic phenomena in molecular junctions: principles and applications. Nature Reviews Chemistry 6, 681-704 (2022). doi: 10.1038/s41570-022-00423-4
[25] Gersten, J. & Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. Journal of Chemical Physics 73, 3023-3037 (1980). doi: 10.1063/1.440560
[26] Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448-1451 (2015). doi: 10.1126/science.aaa9519
[27] Rodríguez-Fortuño, F. J. et al. Lateral forces on circularly polarizable particles near a surface. Nature Communications 6, 8799 (2015). doi: 10.1038/ncomms9799
[28] Alexandrescu, A., Cojoc, D. & Di Fabrizio, E. Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams. Physical Review Letters 96, 243001 (2006). doi: 10.1103/PhysRevLett.96.243001
[29] Wu, T., Wang, R. Y. & Zhang, X. D. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light. Scientific Reports 5, 18003 (2015). doi: 10.1038/srep18003
[30] Govorov, A. O., Zhang, H. & Gun’ko, Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. The Journal of Physical Chemistry C 117, 16616-16631 (2013). doi: 10.1021/jp405430m
[31] Bi, H. et al. Optically induced molecular logic operations. ACS Nano 14, 15248-15255 (2020). doi: 10.1021/acsnano.0c05513
[32] Bi, H. et al. Electron–phonon coupling in current-driven single-molecule junctions. Journal of the American Chemical Society 142, 3384-3391 (2020). doi: 10.1021/jacs.9b07757
[33] Bi, H. et al. Single molecules in strong optical fields: a variable-temperature molecular junction spectroscopy setup. Analytical Chemistry 93, 9853-9859 (2021). doi: 10.1021/acs.analchem.1c01633
[34] Yee, K. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation 14, 302-307 (1966). doi: 10.1109/TAP.1966.1138693