[1] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066
[2] Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013). doi: 10.1038/nmat3520
[3] Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014). doi: 10.1038/nphoton.2014.248
[4] Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017). doi: 10.1038/s41566-017-0048-5
[5] Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006
[6] Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018). doi: 10.1126/science.aar4005
[7] Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018). doi: 10.1126/science.aar4003
[8] Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017). doi: 10.1126/science.aao4551
[9] Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011). doi: 10.1038/nphys2063
[10] Haldane, F. D. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904
[11] Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008). doi: 10.1103/PhysRevA.78.033834
[12] Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacic, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008). doi: 10.1103/PhysRevLett.100.013905
[13] Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293
[14] Poo, Y., Wu, R. X., Lin, Z., Yang, Y. & Chan, C. T. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106, 093903 (2011). doi: 10.1103/PhysRevLett.106.093903
[15] Chen, W. J. et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014). doi: 10.1038/ncomms6782
[16] Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016). doi: 10.1038/nmat4573
[17] Wu, X. et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun. 8, 1304 (2017). doi: 10.1038/s41467-017-01515-2
[18] Yves, S. et al. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun. 8, 16023 (2017). doi: 10.1038/ncomms16023
[19] Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018). doi: 10.1038/nphys4304
[20] Noh, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120, 063902 (2018). doi: 10.1103/PhysRevLett.120.063902
[21] Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018). doi: 10.1126/science.aaq0327
[22] Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019). doi: 10.1038/s41565-018-0297-6
[23] Yang, Y. et al. Realization of a three-dimensional photonic topological insulator. Nature 565, 622–626 (2019). doi: 10.1038/s41586-018-0829-0
[24] He, X. T. et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 10, 872 (2019). doi: 10.1038/s41467-019-08881-z
[25] Keller, J. & Ziman, J. Long range order, short range order and energy gaps. J. Non-Crystalline Solids 8, 111–121 (1972).
[26] Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012). doi: 10.1103/PhysRevLett.109.106402
[27] Bandres, M. A., Rechtsman, M. C. & Segev, M. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016).
[28] Dong, J.-W. et al. Conical dispersion and effective zero refractive index in photonic quasicrystals. Phys. Rev. Lett. 114, 163901 (2015). doi: 10.1103/PhysRevLett.114.163901
[29] Rechtsman, M. et al. Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106, 193904 (2011). doi: 10.1103/PhysRevLett.106.193904
[30] Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nat. Mater. 11, 1017–1022 (2011).
[31] Joshua, R., Patrick, T. & Pavel, Y. Foam as a self-assembling amorphous photonic band gap material. Proc. Natl. Acad. Sci. USA 116, 9202–9207 (2019). doi: 10.1073/pnas.1820526116
[32] Liu, C., Gao, W., Yang, B. & Zhang, S. Disorder-induced topological state transition in photonic metamaterials. Phys. Rev. Lett. 119, 183901 (2017). doi: 10.1103/PhysRevLett.119.183901
[33] Titum, P., Lindner, N. H., Rechtsman, M. C. & Refael, G. Disorder-induced Floquet topological insulators. Phys. Rev. Lett. 114, 056801 (2015). doi: 10.1103/PhysRevLett.114.056801
[34] Stutzer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018). doi: 10.1038/s41586-018-0418-2
[35] Bourne, C. & Prodan, E. Non-commutative Chern numbers for generic aperiodic discrete systems. J. Phys. A 51, 235202 (2018). doi: 10.1088/1751-8121/aac093
[36] Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011). doi: 10.1103/RevModPhys.83.587
[37] Amann-Winkel, K. et al. Colloquium: water's controversial glass transitions. Rev. Mod. Phys. 88, 011002 (2016). doi: 10.1103/RevModPhys.88.011002
[38] Macio, C., Gabriel, R. S., Marco, B. N., Caio, L. & Adalberto, F. Toward realistic amorphous topological insulators. Nano Lett. 19, 8941–8946 (2019). doi: 10.1021/acs.nanolett.9b03881
[39] Agarwala, A. & Shenoy, V. B. Topological insulators in amorphous systems. Phys. Rev. Lett. 118, 236402 (2017). doi: 10.1103/PhysRevLett.118.236402
[40] Agarwala, A., Juricic, V. & Roy, B. Higher-order topological insulators in amorphous solids. Phys. Rev. Res. 2, 012067(R) (2020). doi: 10.1103/PhysRevResearch.2.012067
[41] Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. M. & Irvine, W. T. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380 (2018). doi: 10.1038/s41567-017-0024-5
[42] Yang, B. et al. Topological states in amorphous magnetic photonic lattices. Phys. Rev. B 99, 045307 (2019). doi: 10.1103/PhysRevB.99.045307
[43] Mansha, S. & Chong, Y. D. Robust edge states in amorphous gyromagnetic photonic lattices. Phys. Rev. B 96, 121405 (2017). doi: 10.1103/PhysRevB.96.121405
[44] Gao, G.-J., Bławzdziewicz, J. & O'Hern, C. S. Frequency distribution of mechanically stable disk packings. Phys. Rev. E 74, 061304 (2006). doi: 10.1103/PhysRevE.74.061304
[45] Torquato, S. Perspective: basic understanding of condensed phases of matter via packing models. J. Chem. Phys. 149, 020901 (2018). doi: 10.1063/1.5036657
[46] Luo, W., Sheng, H. & Ma, E. Pair correlation functions and structural building schemes in amorphous alloys. Appl. Phys. Lett. 89, 131927 (2006). doi: 10.1063/1.2356473
[47] Liu, C., Rybin, M. V., Mao, P., Zhang, S. & Kivshar, Y. Disorder-immune photonics based on Mie-resonant dielectric metamaterials. Phys. Rev. Lett. 123, 163901 (2019). doi: 10.1103/PhysRevLett.123.163901
[48] Lewis, L. J. Atomic dynamics through the glass transition. Phys. Rev. B 44, 4245 (1991). doi: 10.1103/PhysRevB.44.4245