[1] Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008). doi: 10.1126/science.1158736
[2] Miller, J. R. Valuing reversible energy storage. Science 335, 1312–1313 (2012). doi: 10.1126/science.1219134
[3] Wang, Y. G., Song, Y. F. & Xia, Y. Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016). doi: 10.1039/C5CS00580A
[4] Lu, X. H., Yu, M. H., Wang, G. M., Tong, Y. X. & Li, Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 2160–2181 (2014). doi: 10.1039/c4ee00960f
[5] Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). doi: 10.1038/nmat2297
[6] Béguin, F. & Frąckowiak, E. Supercapacitors: Materials, Systems, and Applications (Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, 2013).
[7] Wu, Z. S., Liu, Z. Y., Parvez, K., Feng, X. L. & Müllen, K. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27, 3669–3675 (2015). doi: 10.1002/adma.201501208
[8] Wang, Q., Yan, J. & Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016). doi: 10.1039/C5EE03109E
[9] Ni, J. F. & Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6, 1600278 (2016). doi: 10.1002/aenm.201600278
[10] Qiu, M. J. et al. WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A 4, 7266–7273 (2016). doi: 10.1039/C6TA00237D
[11] Sun, P. et al. Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31, 432–440 (2017). doi: 10.1016/j.nanoen.2016.11.052
[12] Yang, P. H. et al. Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J. Mater. Chem. A 2, 595–599 (2014). doi: 10.1039/C3TA14275B
[13] Yao, B. et al. Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28, 6353–6358 (2016). doi: 10.1002/adma.201600529
[14] Yao, B. et al. Flexible electrodes: paper‐based electrodes for flexible energy storage devices (Adv. Sci. 7/2017). Adv. Sci. 4, 1700107 (2017).
[15] Gu, M. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of si nanowire battery anodes. Nano Lett. 13, 6106–6112 (2013). doi: 10.1021/nl403402q
[16] Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. & Harris, C. T. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 4379–4389 (2015). doi: 10.1021/acsnano.5b00876
[17] Mehdi, B. L. et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015). doi: 10.1021/acs.nanolett.5b00175
[18] Sacci, R. L. et al. Nanoscale imaging of fundamental Li Battery Chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 15, 2011–2018 (2015). doi: 10.1021/nl5048626
[19] Zeng, Z. Y. et al. Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014). doi: 10.1021/nl403922u
[20] Li, Y. Z. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017). doi: 10.1126/science.aam6014
[21] Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 1999).
[22] Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016). doi: 10.1038/nmat4777
[23] Kretschmann, E. Determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. A Hadr. Nucl. 241, 313–324 (1971). doi: 10.1007/BF01395428
[24] Wang, S. P., Xp, Huang, Shan, X. N., Foley, K. J. & Tao, N. J. Electrochemical surface plasmon resonance: basic formalism and experimental validation. Anal. Chem. 82, 935–941 (2010). doi: 10.1021/ac902178f
[25] Foley, K. J., Shan, X. N. & Tao, N. J. Surface impedance imaging technique. Anal. Chem. 80, 5146–5151 (2008). doi: 10.1021/ac800361p
[26] Fang, Y. M. et al. Plasmonic imaging of electrochemical oxidation of single nanoparticles. J. Am. Chem. Soc. 136, 12584–12587 (2014). doi: 10.1021/ja507097y
[27] MacGriff, C. et al. Charge-based detection of small molecules by plasmonic-based electrochemical impedance microscopy. Anal. Chem. 85, 6682–6687 (2013). doi: 10.1021/ac400475z
[28] Wang, Y. X. et al. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy. Anal. Chem. 87, 494–498 (2015). doi: 10.1021/ac5036692
[29] Albert, J., Shao, L. Y. & Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photon Rev. 7, 83–108 (2013). doi: 10.1002/lpor.201100039
[30] Guo, T., González-Vila, A., Loyez, M. & Caucheteur, C. Plasmonic optical fiber-grating immunosensing: a review. Sensors 17, 2732 (2017). doi: 10.3390/s17122732
[31] Caucheteur, C., Guo, T. & Albert, J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407, 3883–3897 (2015). doi: 10.1007/s00216-014-8411-6
[32] Guo, T. A., Liu, F., Guan, B. O. & Albert, J. [INVITED] Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 78, 19–33 (2016). doi: 10.1016/j.optlastec.2015.10.007
[33] Alam, M. Z. & Albert, J. Selective excitation of radially and azimuthally polarized optical fiber cladding modes. J. Light. Technol. 31, 3167–3175 (2013). doi: 10.1109/JLT.2013.2280581
[34] Guo, T. Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing. J. Light. Technol. 35, 3323–3333 (2017). doi: 10.1109/JLT.2016.2590879