[1] Li, L. K. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). doi: 10.1038/nnano.2014.35
[2] Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). doi: 10.1021/nn501226z
[3] Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). doi: 10.1088/2053-1583/1/2/025001
[4] Koenig, S. P. et al. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014). doi: 10.1063/1.4868132
[5] Xia, F. N., Wang, H. & Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). doi: 10.1038/ncomms5458
[6] Tran, V. et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014). doi: 10.1103/PhysRevB.89.235319
[7] Yuan, H. T. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 10, 707–713 (2015). doi: 10.1038/nnano.2015.112
[8] Chen, C. et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 19, 1488–1493 (2019). doi: 10.1021/acs.nanolett.8b04041
[9] Li, L. K. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017). doi: 10.1038/nnano.2016.171
[10] Zhang, G. W. et al. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8, 14071 (2017). doi: 10.1038/ncomms14071
[11] Chen, X. L. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015). doi: 10.1038/ncomms8315
[12] Li, L. K. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015). doi: 10.1038/nnano.2015.91
[13] Long, G. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016). doi: 10.1021/acs.nanolett.6b03951
[14] Yang, J. W. et al. Integer and fractional quantum hall effect in ultrahigh quality few-layer black phosphorus transistors. Nano Lett. 18, 229–234 (2018). doi: 10.1021/acs.nanolett.7b03954
[15] Ling, X. et al. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015). doi: 10.1073/pnas.1416581112
[16] Liu, H. et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). doi: 10.1039/C4CS00257A
[17] Chen, X. L. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017). doi: 10.1038/s41467-017-01978-3
[18] Liu, Y. P. et al. Gate-tunable giant stark effect in few-layer black phosphorus. Nano Lett. 17, 1970–1977 (2017). doi: 10.1021/acs.nanolett.6b05381
[19] Yan, S. L. et al. Electrically tunable energy bandgap in dual-gated ultra-thin black phosphorus field effect transistors. Chin. Phys. Lett. 34, 047304 (2017). doi: 10.1088/0256-307X/34/4/047304
[20] Deng, B. C. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 8, 14474 (2017). doi: 10.1038/ncomms14474
[21] Chen, X. L. et al. Electrically tunable physical properties of two-dimensional materials. Nano Today 27, 99–119 (2019). doi: 10.1016/j.nantod.2019.05.005
[22] Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). doi: 10.1038/nnano.2012.193
[23] Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13, 913–921 (2019). doi: 10.1021/acsnano.8b08758
[24] Peng, R. M. et al. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 17, 6315–6320 (2017). doi: 10.1021/acs.nanolett.7b03050
[25] Whitney, W. S. et al. Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 17, 78–84 (2017). doi: 10.1021/acs.nanolett.6b03362
[26] Zhang, R. et al. Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv. Optical Mater. 3, 1787–1792 (2015). doi: 10.1002/adom.201500298
[27] Guo, Q. S. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016). doi: 10.1021/acs.nanolett.6b01977
[28] Pei, J. J. et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016). doi: 10.1038/ncomms10450
[29] Yang, J. et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light.: Sci. Appl. 4, e312 (2015). doi: 10.1038/lsa.2015.85
[30] Wang, X. M. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015). doi: 10.1038/nnano.2015.71
[31] Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014). doi: 10.1021/nn503893j
[32] Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).
[33] Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). doi: 10.1126/science.1235547
[34] Lee, C. H. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
[35] Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015). doi: 10.1038/nmat4205
[36] Chen, P. et al. Gate tunable MoS2–black phosphorus heterojunction devices. 2D Mater. 2, 034009 (2015). doi: 10.1088/2053-1583/2/3/034009
[37] Deng, Y. X. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8, 8292–8299 (2014). doi: 10.1021/nn5027388
[38] Huang, M. Q. et al. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017).
[39] Liu, X. C. et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p-n junction. ACS Nano 11, 9143–9150 (2017). doi: 10.1021/acsnano.7b03994
[40] Liu, Y. P. et al. Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure. Nat. Nanotechnol. 13, 828–834 (2018). http://europepmc.org/abstract/MED/29941889
[41] Qiao, J. S. et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). doi: 10.1038/ncomms5475
[42] Sun, Y. et al. Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. Adv. Mater. 31, 1806562 (2019). doi: 10.1002/adma.201806562
[43] Cui, Q. N. et al. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 8, 2970–2976 (2014). doi: 10.1021/nn500277y
[44] Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002
[45] Yuan, J. T. et al. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus. ACS Nano 9, 555–563 (2015). doi: 10.1021/nn505809d
[46] Zhao, W. J. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013). doi: 10.1021/nn305275h
[47] Yan, R. S. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015). doi: 10.1021/acs.nanolett.5b01792
[48] Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013). doi: 10.1038/ncomms3642
[49] Shim, J. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016). doi: 10.1038/ncomms13413
[50] Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015). doi: 10.1038/nmat4299