[1] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77-79 (2001). doi: 10.1126/science.1058847
[2] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780-1782 (2006). doi: 10.1126/science.1125907
[3] Leonhardt, U. Optical conformal mapping. Science 312, 1777-1780 (2006). doi: 10.1126/science.1126493
[4] Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628
[5] Cai, W. S. et al. Optical cloaking with metamaterials. Nat. Photonics 1, 224-227 (2007). doi: 10.1038/nphoton.2007.28
[6] Liu, R. et al. Broadband ground-plane cloak. Science 323, 366-369 (2009). doi: 10.1126/science.1166949
[7] Valentine, J. et al. An optical cloak made of dielectrics. Nat. Mater. 8, 568-571 (2009). doi: 10.1038/nmat2461
[8] Landy, N. & Smith, D. R. A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 12, 25-28 (2013). doi: 10.1038/nmat3476
[9] Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005). doi: 10.1103/PhysRevE.72.016623
[10] Alù, A. & Engheta, N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. Lett. 100, 113901 (2008). doi: 10.1103/PhysRevLett.100.113901
[11] Edwards, B. et al. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett. 103, 153901 (2009). doi: 10.1103/PhysRevLett.103.153901
[12] Liu, S. et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface. Opt. Express 22, 13403-13417 (2014). doi: 10.1364/OE.22.013403
[13] Alitalo, P. et al. Experimental characterization of a broadband transmission-line cloak in free space. IEEE Trans. Antennas Propag. 60, 4963-4968 (2012). doi: 10.1109/TAP.2012.2207339
[14] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[15] Cui, T. J. et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. : Sci. Appl. 3, e218 (2014). doi: 10.1038/lsa.2014.99
[16] Ding, F., Pors, A. & Bozhevolnyi, S. I. Gradient metasurfaces: a review of fundamentals and applications. Rep. Progress Phys. 81, 026401 (2018). doi: 10.1088/1361-6633/aa8732
[17] Xu, H. X. et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light. : Sci. Appl. 8, 3 (2019). doi: 10.1038/s41377-018-0113-y
[18] Sun, S. L. et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics 11, 380-479 (2019). doi: 10.1364/AOP.11.000380
[19] Xu, H. X. et al. Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization. Adv. Optical Mater. 7, 1801479 (2019). doi: 10.1002/adom.201801479
[20] Huo, P. C. et al. Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Optical Mater. 7, 1801616 (2019). doi: 10.1002/adom.201801616
[21] Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019). doi: 10.1126/science.aat3100
[22] Hu, G. W. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface. Nat. Photonics 13, 467-472 (2019). doi: 10.1038/s41566-019-0399-1
[23] Dai, Z. G. et al. Artificial metaphotonics born naturally in two dimensions. Chem. Rev. 120, 6197-6246 (2020). doi: 10.1021/acs.chemrev.9b00592
[24] Iyer, A. K., Alù, A. & Epstein, A. Metamaterials and metasurfaces—historical context, recent advances, and future directions. IEEE Trans. Antennas Propag. 68, 1223-1231 (2020). doi: 10.1109/TAP.2020.2969732
[25] Wang, Z. et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci. 7, 2000982 (2020). doi: 10.1002/advs.202000982
[26] Li, S. Q. et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics 9, 3473-3481 (2020). doi: 10.1515/nanoph-2020-0200
[27] Zhang, J. et al. An ultrathin directional carpet cloak based on generalized Snell's law. Appl. Phys. Lett. 103, 151115 (2013). doi: 10.1063/1.4824898
[28] Estakhri, N. M. & Alù, A. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces. IEEE Antennas Wirel. Propag. Lett. 13, 1775-1778 (2014). doi: 10.1109/LAWP.2014.2371894
[29] Ni, X. J. et al. An ultrathin invisibility skin cloak for visible light. Science 349, 1310-1314 (2015). doi: 10.1126/science.aac9411
[30] Yang, Y. H. et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater. 28, 6866-6871 (2016). doi: 10.1002/adma.201600625
[31] Orazbayev, B. et al. Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves. Adv. Optical Mater. 5, 1600606 (2017). doi: 10.1002/adom.201600606
[32] Jiang, Z. J. et al. Experimental demonstration of a 3D-printed arched metasurface carpet cloak. Adv. Optical Mater. 7, 1900475 (2019). doi: 10.1002/adom.201900475
[33] Wang, C. et al. Multi-frequency metasurface carpet cloaks. Opt. Express 26, 14123-14131 (2018). doi: 10.1364/OE.26.014123
[34] Chu, H. C. et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light. : Sci. Appl. 7, 50 (2018). doi: 10.1038/s41377-018-0052-7
[35] Zhang, X. G. et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. 3, 165-171 (2020). doi: 10.1038/s41928-020-0380-5
[36] Huang, C. et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics 5, 1718-1725 (2018). doi: 10.1021/acsphotonics.7b01114
[37] Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 14, 383-390 (2020). doi: 10.1038/s41566-020-0604-2
[38] Su, P. et al. An ultra-wideband and polarization-independent metasurface for RCS reduction. Sci. Rep. 6, 20387 (2016). doi: 10.1038/srep20387
[39] Xu, H. X. et al. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics 5, 1691-1702 (2018). doi: 10.1021/acsphotonics.7b01036
[40] Chen, W. T. et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10, 355 (2019). doi: 10.1038/s41467-019-08305-y
[41] Kamali, S. M. et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016). doi: 10.1038/ncomms11618
[42] Xu, H. X. et al. High-efficiency broadband polarization-independent superscatterer using conformal metasurfaces. Photonics Res. 6, 782-788 (2018). doi: 10.1364/PRJ.6.000782
[43] Teo, J. Y. H. et al. Controlling electromagnetic fields at boundaries of arbitrary geometries. Phys. Rev. A 94, 023820 (2016). doi: 10.1103/PhysRevA.94.023820
[44] Wu, K. D. et al. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018). doi: 10.1038/s41467-018-05579-6
[45] Zhang, B. et al. Investigation on 3-D-printing technologies for millimeter-wave and terahertz applications. Proc. IEEE 105, 723-736 (2017). doi: 10.1109/JPROC.2016.2639520
[46] Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[47] Devlin, R. C. et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392
[48] Xu, H. X. et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control. ACS Photonics 6, 211-220 (2019). doi: 10.1021/acsphotonics.8b01439
[49] Yuan, Y. Y. et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun. 11, 4186 (2020). doi: 10.1038/s41467-020-17773-6
[50] Zhang, X. Y. et al. Controlling angular dispersions in optical metasurfaces. Light. : Sci. Appl. 9, 76 (2020). doi: 10.1038/s41377-020-0313-0