[1] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545-1548 (2013). doi: 10.1126/science.1237861
[2] Willner, A. E. et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 7, 66-106 (2015). doi: 10.1364/AOP.7.000066
[3] Wang, J. Advances in communications using optical vortices. Photonics Research 4, B14-B28 (2016). doi: 10.1364/PRJ.4.000B14
[4] Liu, J. Y. et al. 1-Pbps orbital angular momentum fibre-optic transmission. Light: Science & Applications 11, 202 (2022).
[5] Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light:Science & Applications 4, e257 (2015).
[6] Cao, G. Y., Lin, H. & Jia, B. H. Broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting. Ultrafast Science 3, 0018 (2023). doi: 10.34133/ultrafastscience.0018
[7] Neuman, K. C. & Block, S. M. Optical trapping. Review of Scientific Instruments 75, 2787-2809 (2004). doi: 10.1063/1.1785844
[8] Singh, B. K. et al. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams. Light:Science & Applications 6, e17050 (2017).
[9] Erhard, M. et al. Twisted photons: new quantum perspectives in high dimensions. Light:Science & Applications 7, 17146 (2018).
[10] Zhou, Z. Y. et al. Orbital angular momentum photonic quantum interface. Light:Science & Applications 5, e16019 (2016).
[11] Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640-643 (2012). doi: 10.1126/science.1227193
[12] Hamazaki, J. et al. Optical-vortex laser ablation. Optics Express 18, 2144-2151 (2010). doi: 10.1364/OE.18.002144
[13] Toyoda, K. et al. Transfer of light helicity to nanostructures. Physical Review Letters 110, 143603 (2013). doi: 10.1103/PhysRevLett.110.143603
[14] Toyoda, K. et al. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Letters 12, 3645-3649 (2012). doi: 10.1021/nl301347j
[15] Zhang, S. J. et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Applied Physics Letters 105, 061101 (2014). doi: 10.1063/1.4893007
[16] Ni, J. C. et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light:Science & Applications 6, e17011 (2017).
[17] Petrov, N. V. et al. Design of broadband terahertz vector and vortex beams: II. Holographic assessment. Light:Advanced Manufacturing 3, 752-770 (2022).
[18] Beijersbergen, M. W. et al. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications 112, 321-327 (1994). doi: 10.1016/0030-4018(94)90638-6
[19] Sueda, K. et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Optics Express 12, 3548-3553 (2004). doi: 10.1364/OPEX.12.003548
[20] Bekshaev, A., Orlinska, O. & Vasnetsov, M. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Optics Communications 283, 2006-2016 (2010). doi: 10.1016/j.optcom.2010.01.012
[21] Forbes, A., Dudley, A. & McLaren, M. Creation and detection of optical modes with spatial light modulators. Advances in Optics and Photonics 8, 200-227 (2016). doi: 10.1364/AOP.8.000200
[22] Liu, J. & Wang, J. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator. Scientific Reports 5, 9959 (2015). doi: 10.1038/srep09959
[23] Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light:Science & Applications 3, e167 (2014).
[24] Li, G. X. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters 13, 4148-4151 (2013). doi: 10.1021/nl401734r
[25] Zhu, Y. et al. Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions. Light:Advanced Manufacturing 4, 104-114 (2023).
[26] Ricci, F., Löffler, W. & Van Exter, M. P. Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer. Optics Express 20, 22961-22975 (2012). doi: 10.1364/OE.20.022961
[27] Oron, R. et al. Efficient formation of pure helical laser beams. Optics Communications 182, 205-208 (2000). doi: 10.1016/S0030-4018(00)00804-X
[28] Kim, J. W. et al. High power Er: YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output. Optics Express 19, 14526-14531 (2011). doi: 10.1364/OE.19.014526
[29] Qiao, Z. et al. Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser. Optics Letters 42, 2547-2550 (2017). doi: 10.1364/OL.42.002547
[30] Peng, Z. J. et al. High-power femtosecond vortices generated from a Kerr-lens mode-locked solid-state Hermite–Gaussian oscillator. Optics Letters 48, 2708-2711 (2023). doi: 10.1364/OL.492186
[31] Ito, A., Kozawa, Y. & Sato, S. Generation of hollow scalar and vector beams using a spot-defect mirror. JOSA A 27, 2072-2077 (2010). doi: 10.1364/JOSAA.27.002072
[32] Chard, S. P., Shardlow, P. C. & Damzen, M. J. High-power non-astigmatic TEM 00 and vortex mode generation in a compact bounce laser design. Applied Physics B 97, 275-280 (2009). doi: 10.1007/s00340-009-3642-5
[33] Qiao, Z. et al. Generating high-charge optical vortices directly from laser up to 288th order. Laser & Photonics Reviews 12, 1800019 (2018).
[34] Lu, J. L. et al. Direct generation of an optical vortex beam from a diode-pumped Yb: MgWO4 laser. Laser Physics Letters 14, 085807 (2017). doi: 10.1088/1612-202X/aa7878
[35] Cui, C. et al. Generation of high-power first-order Laguerre-Gaussian beam from a solid-state Tm laser at ~2 μm. in CLEO: Science and Innovations (San Jose, California: Optica Publishing Group, 2022), SF1B. 3.
[36] Geberbauer, J. W. T. , Kerridge-Johns, W. R. & Damzen, M. J. >30 W vortex LG01 or HG10 laser using a mode transforming output coupler. Optics Express 29, 29082-29094 (2021).
[37] Ren, C. Y. et al. High power Ho: Y2O3 ceramic laser with controllable output intensity profile at 2.1 μm. Optics Express 31, 17283-17290 (2023).
[38] Giesen, A. & Speiser, J. Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE Journal of Selected Topics in Quantum Electronics 13, 598-609 (2007). doi: 10.1109/JSTQE.2007.897180
[39] Speiser, J. & Giesen, A. Numerical modeling of high power continuous-wave Yb: YAG thin disk lasers, scaling to 14 kW. in Advanced Solid-State Photonics (Vancouver Canada: Optica Publishing Group, 2007), WB9.
[40] Shang, J. L. et al. The influences of amplified spontaneous emission, crystal temperature and round-trip loss on scaling of CW thin-disk laser. Optics and Laser Technology 44, 1359-1371 (2012). doi: 10.1016/j.optlastec.2011.12.030
[41] Zhang, J. W. et al. Distributed kerr lens mode-Locked Yb: YAG thin-disk oscillator. Ultrafast Science 2022, 9837892 (2022).
[42] Chen, H. S. et al. High-efficiency 100-W Kerr-lens mode-locked Yb: YAG thin-disk oscillator. Frontiers in Physics 11, 1191010 (2023). doi: 10.3389/fphy.2023.1191010
[43] Killi, A. et al. Current status and development trends of disk laser technology. Proceedings Volume 6871, Solid State Lasers XVII: Technology and Devices. San Jose, California, United States: SPIE, 2008, 181-190.
[44] Dietrich, T. et al. Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb: YAG thin-disk laser. Optics Express 23, 26651-26659 (2015). doi: 10.1364/OE.23.026651
[45] Dietrich, T. et al. Thin-disk oscillator delivering radially polarized beams with up to 980 W of CW output power. Optics Letters 43, 1371-1374 (2018). doi: 10.1364/OL.43.001371
[46] Beirow, F. et al. Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level. Optics Express 26, 4401-4410 (2018). doi: 10.1364/OE.26.004401
[47] Liu, H. Y. et al. Sub-100-fs Kerr-lens mode-locked Yb: YAG ring-cavity thin-disk oscillator. Optics Letters 48, 3031-3034 (2023). doi: 10.1364/OL.492992
[48] Clarkson, W. A. & Hanna, D. C. Effects of transverse-mode profile on slope efficiency and relaxation oscillations in a longitudinally-pumped laser. Journal of Modern Optics 36, 483-498 (1989). doi: 10.1080/09500348914550561
[49] Fox, A. G. & Li, T. Y. Resonant modes in a maser interferometer. Bell System Technical Journal 40, 453-488 (1961). doi: 10.1002/j.1538-7305.1961.tb01625.x
[50] Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A 45, 8185-8189 (1992).
[51] Kim, D. J., Mackenzie, J. I. & Kim, J. W. Adaptable beam profiles from a dual-cavity Nd: YAG laser. Optics Letters 41, 1740-1743 (2016). doi: 10.1364/OL.41.001740
[52] Duocastella, M. & Arnold, C. B. Bessel and annular beams for materials processing. Laser & Photonics Reviews 6, 607-621 (2012).
[53] Poetzlberger, M. et al. Kerr-lens mode-locked thin-disk oscillator with 50% output coupling rate. Optics Letters 44, 4227-4230 (2019). doi: 10.1364/OL.44.004227
[54] Brons, J. et al. Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters 41, 3567-3570 (2016). doi: 10.1364/OL.41.003567
[55] Brons, J. et al. Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters 39, 6442-6445 (2014). doi: 10.1364/OL.39.006442
[56] Kim, D. J. & Kim, J. W. Direct generation of an optical vortex beam in a single-frequency Nd: YVO4 laser. Optics Letters 40, 399-402 (2015). doi: 10.1364/OL.40.000399