| [1] | Leith, E. N. & Upatnieks, J. New techniques in wavefront reconstruction. Journal of the Optical Society of America 51, 1469-1473 (1961). |
| [2] | Denisyuk, Y. N. On the reflection of optical properties of an object in a wave field of light scattered by it. Doklady Akademii Nauk SSSR 144, 1275-1278 (1962). |
| [3] | De Bitetto, D. A holographic motion picture film with constant velocity transport. Applied Physics Letters 12, 295-297 (1968). doi: 10.1063/1.1651998 |
| [4] | Jacobson, A. D., Evtuhov, V. & Neeland, J. K. Motion picture holography. Applied Physics Letters 14, 120-122 (1969). doi: 10.1063/1.1652740 |
| [5] | Blanche, P. A. Introduction to holographic principles. in Optical Holography: Materials, Theory and Applications (ed Blanche, P. A.) Ch. 1 (Amsterdam: Elsevier, 2020), 1-39. |
| [6] | Ciciora, W. et al. Cable telephony. in Modern Cable Television Technology: Video, Voice, and Data Communications 2nd edn (eds Ciciora, W. et al) Ch. 6 (Amsterdam: Morgan Kaufmann, 2004), 229-284. |
| [7] | Plonus, M. Digital systems. in Electronics and Communications for Scientists and Engineers 2nd edn (ed Plonus, M.) Ch. 9 (Oxford: Butterworth-Heinemann, 2020), 355-480. |
| [8] | Pritchard, D. H. U.S. color television fundamentals: a review. SMPTE Journal 86, 819-828 (1977). doi: 10.5594/J06718 |
| [9] | Dunn, D. et al. Stimulating the human visual system beyond real world performance in future augmented reality displays. Proceedings of 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Porto de Galinhas, Brazil: IEEE, 2020, 90-100. |
| [10] | Howard, I. P. Perceiving in Depth, Volume 1: Basic Mechanisms. (Oxford: Oxford University Press, 2012). |
| [11] | Park, M. C. & Mun, S. Overview of measurement methods for factors affecting the human visual system in 3D displays. Journal of Display Technology 11, 877-888 (2015). doi: 10.1109/JDT.2015.2389212 |
| [12] | Mayo, H. Outlines of Human Physiology. 4th edn. (London: Renshaw, 1837). |
| [13] | Cakmakci, O. & Rolland, J. Head-worn displays: a review. Journal of Display Technology 2, 199-216 (2006). doi: 10.1109/JDT.2006.879846 |
| [14] | Urey, H. et al. State of the art in stereoscopic and autostereoscopic displays. Proceedings of the IEEE 99, 540-555 (2011). doi: 10.1109/JPROC.2010.2098351 |
| [15] | Woods, A. J. Crosstalk in stereoscopic displays: a review. Journal of Electronic Imaging 21, 040902 (2012). doi: 10.1117/1.JEI.21.4.040902 |
| [16] | Read, J. C. A. & Bohr, I. User experience while viewing stereoscopic 3D television. Ergonomics 57, 1140-1153 (2014). doi: 10.1080/00140139.2014.914581 |
| [17] | Sexton, I. & Surman, P. Stereoscopic and autostereoscopic display systems. IEEE Signal Processing Magazine 16, 85-99 (1999). doi: 10.1109/79.768575 |
| [18] | Dodgson, N. A. Autostereoscopic 3D displays. Computer 38, 31-36 (2005). doi: 10.1109/MC.2005.252 |
| [19] | Iizuka, K. Engineering Optics. 3rd edn. (New York: Springer, 2008). |
| [20] | Rotter, P. Why did the 3D revolution fail?: the present and future of stereoscopy [commentary]. IEEE Technology and Society Magazine 36, 81-85 (2017). |
| [21] | Chen, Y. S. et al. Video-based eye tracking autostereoscopic displays. Optical Engineering 40, 2726-2734 (2001). doi: 10.1117/1.1416130 |
| [22] | Yi, S. Y., Chae, H. B. & Lee, S. H. Moving parallax barrier design for eye-tracking autostereoscopic displays. Proceedings of 2008 3DTV Conference: the True Vision-Capture, Transmission and Display of 3D Video. Istanbul, Turkey: IEEE, 2008, 165-168. |
| [23] | Yoon, K. H. et al. Autostereoscopic 3D display system with dynamic fusion of the viewing zone under eye tracking: principles, setup, and evaluation [Invited]. Applied Optics 57, A101-A117 (2018). doi: 10.1364/AO.57.00A101 |
| [24] | Yu, X. B. et al. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues. Optics Express 23, 25950-25958 (2015). doi: 10.1364/OE.23.025950 |
| [25] | Kara, P. A. et al. The key performance indicators of projection-based light field visualization. Journal of Information Display 20, 81-93 (2019). doi: 10.1080/15980316.2019.1606120 |
| [26] | Kara, P. A. et al. The interdependence of spatial and angular resolution in the quality of experience of light field visualization. Proceedings of 2017 International Conference on 3D Immersion (IC3D). Brussels, Belgium: IEEE, 2017, 1-8. |
| [27] | Stern, A., Yitzhaky, Y. & Javidi, B. Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3-D displays. Proceedings of the IEEE 102, 1571-1587 (2014). doi: 10.1109/JPROC.2014.2348938 |
| [28] | Watanabe, Y. & Kakeya, H. A full-HD super-multiview display based on adaptive time-division multiplexing parallax barrier. ITE Transactions on Media Technology and Applications 8, 230-237 (2020). doi: 10.3169/mta.8.230 |
| [29] | Wan, W. Q. et al. Super multi-view display based on pixelated nanogratings under an illumination of a point light source. Optics and Lasers in Engineering 134, 106258 (2020). doi: 10.1016/j.optlaseng.2020.106258 |
| [30] | Wu, G. C. et al. Light field image processing: an overview. IEEE Journal of Selected Topics in Signal Processing 11, 926-954 (2017). doi: 10.1109/JSTSP.2017.2747126 |
| [31] | Martínez-Corral, M. & Javidi, B. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Advances in Optics and Photonics 10, 512-566 (2018). doi: 10.1364/AOP.10.000512 |
| [32] | Huang, H. K. & Hua, H. High-performance integral-imaging- based light field augmented reality display using freeform optics. Optics Express 26, 17578-17590 (2018). doi: 10.1364/OE.26.017578 |
| [33] | Rogers, B. & Graham, M. Similarities between motion parallax and stereopsis in human depth perception. Vision Research 22, 261-270 (1982). doi: 10.1016/0042-6989(82)90126-2 |
| [34] | Blanche, P. A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80-83 (2010). doi: 10.1038/nature09521 |
| [35] | Yang, L. et al. Demonstration of a large-size horizontal light-field display based on the LED panel and the micro-pinhole unit array. Optics Communications 414, 140-145 (2018). doi: 10.1016/j.optcom.2017.12.069 |
| [36] | Yu, X. B. et al. Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors. Optics Express 27, 16024-16031 (2019). doi: 10.1364/OE.27.016024 |
| [37] | Liu, B. Y. et al. Time-multiplexed light field display with 120-degree wide viewing angle. Optics Express 27, 35728-35739 (2019). doi: 10.1364/OE.27.035728 |
| [38] | Gao, X. et al. Full-parallax 3D light field display with uniform view density along the horizontal and vertical direction. Optics Communications 467, 125765 (2020). doi: 10.1016/j.optcom.2020.125765 |
| [39] | Kara, P. A. et al. Cinema as large as life: large-scale light field cinema system. Proceedings of 2017 International Conference on 3D Immersion (IC3D). Brussels, Belgium: IEEE, 2017, 1-8. |
| [40] | Wang, P. R. et al. A full-parallax tabletop three dimensional light-field display with high viewpoint density and large viewing angle based on space-multiplexed voxel screen. Optics Communications 488, 126757 (2021). doi: 10.1016/j.optcom.2021.126757 |
| [41] | Looking Glass Factory. (2021). at https://lookingglassfactory.com/. |
| [42] | Lambooij, M. T., IJsselsteijn, W. A. & Heynderickx, I. Visual discomfort in stereoscopic displays: a review. Proceedings of SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV. San Jose, CA, United States: SPIE, 2007, 64900I. |
| [43] | Hoffman, D. M. et al. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 33 (2008). |
| [44] | Kim, J., Kane, D. & Banks, M. S. The rate of change of vergence–accommodation conflict affects visual discomfort. Vision Research 105, 159-165 (2014). doi: 10.1016/j.visres.2014.10.021 |
| [45] | Daniel, F. & Kapoula, Z. Induced vergence-accommodation conflict reduces cognitive performance in the Stroop test. Scientific Reports 9, 1247 (2019). doi: 10.1038/s41598-018-37778-y |
| [46] | Watanabe, Y. & Kakeya, H. Time-division and color multiplexing light-field display using liquid-crystal display panels to induce focal accommodation. Applied Optics 60, 1966-1972 (2021). doi: 10.1364/AO.413352 |
| [47] | Li, T. T. et al. View-dependent light-field display that supports accommodation using a commercially-available high pixel density LCD panel. SID Symposium Digest of Technical Papers 51, 1013-1016 (2020). doi: 10.1002/sdtp.14044 |
| [48] | St Hilaire, P. et al. Are stereograms holograms? A human perception analysis of sampled perspective holography. Journal of Physics: Conference Series 415, 012035 (2013). doi: 10.1088/1742-6596/415/1/012035 |
| [49] | Huang, H. K. & Hua, H. Effects of ray position sampling on the visual responses of 3D light field displays. Optics Express 27, 9343-9360 (2019). doi: 10.1364/OE.27.009343 |
| [50] | Zhan, T. et al. Multifocal displays: review and prospect. PhotoniX 1, 10 (2020). doi: 10.1186/s43074-020-00010-0 |
| [51] | Balram, N. & Tošic, I. Light-field imaging and display systems. Information Display 32, 6-13 (2016). |
| [52] | Jo, Y. et al. Tomographic projector: large scale volumetric display with uniform viewing experiences. ACM Transactions on Graphics 38, 21 (2019). |
| [53] | Chang, J. H. R., Kumar, B. V. K. V. & Sankaranarayanan, A. C. Towards multifocal displays with dense focal stacks. ACM Transactions on Graphics 37, 198 (2018). |
| [54] | Smalley, D. et al. Volumetric displays: turning 3-D inside-out. Optics and Photonics News 29, 26-33 (2018). |
| [55] | Smalley, D. E. et al. A photophoretic-trap volumetric display. Nature 553, 486-490 (2018). doi: 10.1038/nature25176 |
| [56] | Jones, A. et al. Rendering for an interactive 360° light field display. ACM Transactions on Graphics 26, 40-es (2007). doi: 10.1145/1276377.1276427 |
| [57] | Hirayama, R. et al. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 575, 320-323 (2019). doi: 10.1038/s41586-019-1739-5 |
| [58] | Kumagai, K., Hasegawa, S. & Hayasaki, Y. Volumetric bubble display. Optica 4, 298-302 (2017). doi: 10.1364/OPTICA.4.000298 |
| [59] | Rogers, W. & Smalley, D. Simulating virtual images in optical trap displays. Scientific Reports 11, 7522 (2021). doi: 10.1038/s41598-021-86495-6 |
| [60] | Suzuki, K., Fukano, Y. & Oku, H. 1000-volume/s high-speed volumetric display for high-speed HMD. Optics Express 28, 29455-29468 (2020). doi: 10.1364/OE.401778 |
| [61] | Baek, H. et al. Wheel screen type lamina 3D display system with enhanced resolution. Current Optics and Photonics 5, 23-31 (2021). |
| [62] | Sarakinos, A. & Lembessis, A. Color holography for the documentation and dissemination of cultural heritage: optoclonesTM from four museums in two countries. Journal of Imaging 5, 59 (2019). doi: 10.3390/jimaging5060059 |
| [63] | Gentet, P. et al. Evaluation of the realism of a full-color reflection H2 analog hologram recorded on ultra-fine-grain silver-halide material. Open Physics 17, 449-457 (2019). doi: 10.1515/phys-2019-0046 |
| [64] | Lohmann, A. W. & Paris, D. P. Binary fraunhofer holograms, generated by computer. Applied Optics 6, 1739-1748 (1967). doi: 10.1364/AO.6.001739 |
| [65] | Lesem, L. B, Hirsch, P. M. & Jordan, J. A. The kinoform: a new wavefront reconstruction device. IBM Journal of Research and Development 13, 150-155 (1969). doi: 10.1147/rd.132.0150 |
| [66] | Brown, B. R. & Lohmann, A. W. Computer-generated binary holograms. IBM Journal of research and Development 13, 160-168 (1969). doi: 10.1147/rd.132.0160 |
| [67] | Cameron, C. D. et al. Computational challenges of emerging novel true 3D holographic displays. Proceedings of SPIE 4109, Critical Technologies for the Future of Computing. San Diego, CA, United States: SPIE, 2000, 129-140. |
| [68] | Slinger, C., Cameron, C. & Stanley, M. Computer-generated holography as a generic display technology. Computer 38, 46-53 (2005). |
| [69] | Cooley, J. W. & Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19, 297-301 (1965). doi: 10.1090/S0025-5718-1965-0178586-1 |
| [70] | Bianco, V. et al. Quasi noise-free digital holography. Light: Science & Applications 5, e16142 (2016). |
| [71] | Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-250 (1972). |
| [72] | Makowski, M. et al. Iterative design of multiplane holograms: experiments and applications. Optical Engineering 46, 045802 (2007). doi: 10.1117/1.2727379 |
| [73] | Makowski, M., Sypek, M. & Kolodziejczyk, A. Colorful reconstructions from a thin multi-plane phase hologram. Optics Express 16, 11618-11623 (2008). doi: 10.1364/OE.16.011618 |
| [74] | Velez-Zea, A. Iterative multiplane hologram generation with mixed constraint. Applied Optics 60, 224-231 (2021). doi: 10.1364/AO.408402 |
| [75] | Zhang, H., Cao, L. C. & Jin, G. F. Computer-generated hologram with occlusion effect using layer-based processing. Applied Optics 56, F138-F143 (2017). doi: 10.1364/AO.56.00F138 |
| [76] | Liu, J. P. & Liao, H. K. Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method. Applied Optics 57, A215-A221 (2018). doi: 10.1364/AO.57.00A215 |
| [77] | Liu, S. T. et al. Occlusion calculation algorithm for computer generated hologram based on ray tracing. Optics Communications 443, 76-85 (2019). doi: 10.1016/j.optcom.2019.03.007 |
| [78] | Sahin, E. et al. Computer-generated holograms for 3D imaging: a survey. ACM Computing Surveys 53, 32 (2020). |
| [79] | Su, Y. F. et al. Projection-type multiview holographic three-dimensional display using a single spatial light modulator and a directional diffractive device. IEEE Photonics Journal 10, 7000512 (2018). |
| [80] | Wang, Z. et al. Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique. Applied Physics Letters 113, 221109 (2018). doi: 10.1063/1.5063273 |
| [81] | Zhang, X. et al. Resolution-enhanced holographic stereogram based on integral imaging using an intermediate-view synthesis technique. Optics Communications 457, 124656 (2020). doi: 10.1016/j.optcom.2019.124656 |
| [82] | Shi, L. et al. Towards real-time photorealistic 3d holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0 |
| [83] | Nishitsuji, T. et al. Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model. IEEE Transactions on Industrial Informatics 13, 2447-2454 (2017). doi: 10.1109/TII.2017.2669200 |
| [84] | Tsang, P. W. M., Poon, T. C. & Wu, Y. M. Review of fast methods for point-based computer-generated holography [Invited]. Photonics Research 6, 837-846 (2018). doi: 10.1364/PRJ.6.000837 |
| [85] | Lucente, M. E. Interactive computation of holograms using a look-up table. Journal of Electronic Imaging 2, 28-34 (1993). doi: 10.1117/12.133376 |
| [86] | Sato, H. et al. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration. Scientific Reports 8, 1500 (2018). doi: 10.1038/s41598-018-19361-7 |
| [87] | Pi, D. P. et al. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display. Optics Express 28, 9833-9841 (2020). doi: 10.1364/OE.385388 |
| [88] | Wang, Z. et al. Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table. Optics Express 26, 13322-13330 (2018). doi: 10.1364/OE.26.013322 |
| [89] | Wang, Y. C. et al. Hardware implementations of computer-generated holography: a review. Optical Engineering 59, 102413 (2020). |
| [90] | Sugie, T. et al. High-performance parallel computing for next-generation holographic imaging. Nature Electronics 1, 254-259 (2018). doi: 10.1038/s41928-018-0057-5 |
| [91] | Shimobaba, T. & Ito, T. Computer Holography: Acceleration Algorithms and Hardware Implementations. (Boca Raton: CRC Press, 2019). |
| [92] | Yu, C. Y. et al. Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimedia Tools and Applications 77, 4585-4608 (2018). doi: 10.1007/s11042-017-4637-6 |
| [93] | Sun, M. Y. et al. Acceleration and expansion of a photorealistic computer-generated hologram using backward ray tracing and multiple off-axis wavefront recording plane methods. Optics Express 28, 34994-35005 (2020). doi: 10.1364/OE.410314 |
| [94] | Desiderio, K. & Phillips, I. How Pixar’s animation has evolved over 24 years, from ‘toy story’ to ‘toy story 4’. (2019). at https://blog.adafruit.com/2019/06/30/how-pixars-animation-has-evolved-over-24-years-from-toy-story-to-toy-story-4/. |
| [95] | Horisaki, R., Takagi, R. & Tanida, J. Deep-learning-generated holography. Applied Optics 57, 3859-3863 (2018). doi: 10.1364/AO.57.003859 |
| [96] | Lindsay, M. et al. Machine learning assisted holography. Proceedings of SPIE 11731, Computational Imaging VI. SPIE, 2021, 1173103. |
| [97] | Peng, Y. F. et al. Neural holography with camera-in-the-loop training. ACM Transactions on Graphics 39, 185 (2020). |
| [98] | Chakravarthula, P. et al. Learned hardware-in-the-loop phase retrieval for holographic near-eye displays. ACM Transactions on Graphics 39, 186 (2020). |
| [99] | Lee, J. et al. Deep neural network for multi-depth hologram generation and its training strategy. Optics Express 28, 27137-27154 (2020). doi: 10.1364/OE.402317 |
| [100] | Wu, J. C. et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters 46, 2908-2911 (2021). doi: 10.1364/OL.425485 |
| [101] | Yanagihara, H. et al. Real-time three-dimensional video reconstruction of real scenes with deep depth using electro-holographic display system. Optics Express 27, 15662-15678 (2019). doi: 10.1364/OE.27.015662 |
| [102] | Zhao, Y. et al. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding. Optics Communications 411, 166-169 (2018). doi: 10.1016/j.optcom.2017.11.040 |
| [103] | Sofana, R. S. et al. Future generation 5G wireless networks for smart grid: a comprehensive review. Energies 12, 2140 (2019). doi: 10.3390/en12112140 |
| [104] | Bohli, A. & Bouallegue, R. How to meet increased capacities by future green 5G networks: a survey. IEEE Access 7, 42220-42237 (2019). doi: 10.1109/ACCESS.2019.2907284 |
| [105] | El Rhammad, A. et al. Color digital hologram compression based on matching pursuit. Applied Optics 57, 4930-4942 (2018). doi: 10.1364/AO.57.004930 |
| [106] | Jiao, S. M. et al. Compression of phase-only holograms with JPEG standard and deep learning. Applied Sciences 8, 1258 (2018). doi: 10.3390/app8081258 |
| [107] | Stepień, P. et al. Hologram compression in quantitative phase imaging. Proceedings of SPIE 11249, Quantitative Phase Imaging VI. San Francisco, California, United States: SPIE, 2020, 112491Q. |
| [108] | Liu, M. J., Yang, G. L. & Xie, H. Y. Method of computer-generated hologram compression and transmission using quantum back-propagation neural network. Optical Engineering 56, 023104 (2017). doi: 10.1117/1.OE.56.2.023104 |
| [109] | Zeng, Z. X. et al. Full-color holographic display with increased-viewing-angle [Invited]. Applied Optics 56, F112-F120 (2017). doi: 10.1364/AO.56.00F112 |
| [110] | Lum, Z. M. A. et al. Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling. Optical Engineering 52, 015802 (2013). doi: 10.1117/1.OE.52.1.015802 |
| [111] | Onural, L., Yaraş, F. & Kang, H. Digital holographic three-dimensional video displays. Proceedings of the IEEE 99, 576-589 (2011). doi: 10.1109/JPROC.2010.2098430 |
| [112] | An, J. et al. Slim-panel holographic video display. Nature Communications 11, 5568 (2020). doi: 10.1038/s41467-020-19298-4 |
| [113] | Takaki, Y. & Yokouchi, M. Accommodation measurements of horizontally scanning holographic display. Optics Express 20, 3918-3931 (2012). doi: 10.1364/OE.20.003918 |
| [114] | Kozacki, T. et al. Fourier horizontal parallax only computer and digital holography of large size. Optics Express 29, 18173-18191 (2021). doi: 10.1364/OE.421186 |
| [115] | Henrie, A. et al. Hardware and software improvements to a low-cost horizontal parallax holographic video monitor. Applied Optics 57, A122-A133 (2018). doi: 10.1364/AO.57.00A122 |
| [116] | Sando, Y. et al. Real-time interactive holographic 3D display with a 360° horizontal viewing zone. Applied Optics 58, G1-G5 (2019). doi: 10.1364/AO.58.0000G1 |
| [117] | Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics 36, 85 (2017). |
| [118] | Duan, X. H. et al. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box. Optics Express 28, 31316-31329 (2020). doi: 10.1364/OE.399359 |
| [119] | Zaperty, W., Makowski, P. L. & Kozacki, T. Multi-SLM color holographic 3D display of real-world holographic content with numerical data adaptation. Frontiers in Optics 2017. Washington, D.C. United States: Optical Society of America, 2017, FTu4C.3. |
| [120] | Leister, N. et al. Full-color interactive holographic projection system for large 3D scene reconstruction. Proceedings of SPIE 6911, Emerging Liquid Crystal Technologies III. San Jose, California, United States: SPIE, 2008, 202-211. |
| [121] | Häussler, R., Leister, N. & Stolle, H. Large holographic 3D display for real-time computer-generated holography. Proceedings of SPIE 10335, Digital Optical Technologies 2017. Munich, Germany: SPIE, 2017, 177-187. |
| [122] | Lazarev, G. et al. LCOS spatial light modulators: trends and applications. in Optical Imaging and Metrology: Advanced Technologies (eds Osten, W. & Reingand, N.) Ch. 1 (Weinheim: Wiley, 2012), 1-29. |
| [123] | Wang, Y. M. et al. 2D broadband beamsteering with large-scale MEMS optical phased array. Optica 6, 557-562 (2019). doi: 10.1364/OPTICA.6.000557 |
| [124] | Dudley, D., Duncan, W. M. & Slaughter, J. Emerging digital micromirror device (DMD) applications. Proceedings of SPIE 4985, MOEMS Display and Imaging Systems. San Jose, CA, United States: SPIE, 2003, 14-25. |
| [125] | Chlipala, M. & Kozacki, T. Color LED DMD holographic display with high resolution across large depth. Optics Letters 44, 4255-4258 (2019). doi: 10.1364/OL.44.004255 |
| [126] | Son, J. Y. et al. Holographic display based on a spatial DMD array. Optics Letters 38, 3173-3176 (2013). doi: 10.1364/OL.38.003173 |
| [127] | Jiao, S. M. et al. Complex-amplitude holographic projection with a digital micromirror device (DMD) and error diffusion algorithm. IEEE Journal of Selected Topics in Quantum Electronics 26, 2800108 (2020). |
| [128] | Bloom, D. M. Grating light valve: revolutionizing display technology. Proceedings of SPIE 3013, Projection Displays III. San Jose, CA, United States: SPIE, 1997, 165-171. |
| [129] | Saruta, K. et al. Nanometer-order control of MEMS ribbons for blazed grating light valves. Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul, Turkey: IEEE, 2006, 842-845. |
| [130] | Lin, T. H. Implementation and characterization of a flexure-beam micromechanical spatial light modulator. Optical Engineering 33, 3643-3648 (1994). doi: 10.1117/12.181578 |
| [131] | Douglass, M. DMD reliability: a MEMS success story. Proceedings of SPIE 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II. San Jose, CA, United States: SPIE, 2003, 1-11. |
| [132] | Monk, D. W. Digital light processing: a new image technology for the television of the future. 1997 International Broadcasting Convention IBS 97. Amsterdam, Netherlands: IET, 1997, 581-586. |
| [133] | Bartlett, T. A., McDonald, W. C. & Hall, J. N. Adapting Texas instruments DLP technology to demonstrate a phase spatial light modulator. Proceedings of SPIE 10932, Emerging Digital Micromirror Device Based Systems and Applications XI. San Francisco, California, United States: SPIE, 2019, 109320S. |
| [134] | Bartlett, T. A. et al. Recent advances in the development of the Texas instruments phase-only microelectromechanical systems (MEMS) spatial light modulator. Proceedings of SPIE 11698, Emerging Digital Micromirror Device Based Systems and Applications XIII. SPIE, 2021, 116980O. |
| [135] | Ketchum, R. S. & Blanche, P. A. Diffraction efficiency characteristics for MEMS-based phase-only spatial light modulator with nonlinear phase distribution. Photonics 8, 62 (2021). doi: 10.3390/photonics8030062 |
| [136] | Blanche, P. A. Photorefractive Organic Materials and Applications. (Cham: Springer, 2016). |
| [137] | Li, X. et al. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display. Optics Express 24, 8824-8831 (2016). doi: 10.1364/OE.24.008824 |
| [138] | Benton, S. A. Experiments in holographic video imaging. Proceedings of SPIE 10308, Holography. Tatabánya, Hungary: SPIE, 1990, 103080C. |
| [139] | St-Hilaire, P. et al. Color images with the MIT holographic video display. Proceedings of SPIE 1667, Practical Holography VI. San Jose, CA, United States: SPIE, 1992, 73-84. |
| [140] | Matteo, A. M., Tsai, C. S. & Do, N. Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control 47, 16-28 (2000). doi: 10.1109/58.818745 |
| [141] | Smalley, D. E. et al. Anisotropic leaky-mode modulator for holographic video displays. Nature 498, 313-317 (2013). doi: 10.1038/nature12217 |
| [142] | Qaderi, K. & Smalley, D. E. Leaky-mode waveguide modulators with high deflection angle for use in holographic video displays. Optics Express 24, 20831-20841 (2016). doi: 10.1364/OE.24.020831 |
| [143] | Jolly, S. et al. Progress in transparent flat-panel holographic displays enabled by guided-wave acousto-optics. Proceedings of SPIE 10558, Practical Holography XXXII: Displays, Materials, and Applications. San Francisco, California, United States: SPIE, 2018, 105580L. |
| [144] | Bove, V. M. Jr. Holographic television. in Optical Holography: Materials, Theory and Applications (ed Blanche, P. A.) Ch. 4 (Amsterdam: Elsevier, 2020), 73-82. |
| [145] | Sun, J. et al. Large-scale nanophotonic phased array. Nature 493, 195-199 (2013). doi: 10.1038/nature11727 |
| [146] | Sun, J. et al. Large-scale silicon photonic circuits for optical phased arrays. IEEE Journal of Selected Topics in Quantum Electronics 20, 8201115 (2014). |
| [147] | Mahrous, H. et al. A compact 120 GHz monolithic silicon-on-silica electro-optic modulator. Optical and Quantum Electronics 52, 111 (2020). doi: 10.1007/s11082-020-2239-4 |
| [148] | Jarrahi, M. et al. Optical switching based on high-speed phased array optical beam steering. Applied Physics Letters 92, 014106 (2008). doi: 10.1063/1.2831005 |
| [149] | Porcel, M. A. G. et al. [INVITED] Silicon nitride photonic integration for visible light applications. Optics & Laser Technology 112, 299-306 (2019). |
| [150] | Su, T. H. et al. Experimental demonstration of interferometric imaging using photonic integrated circuits. Optics Express 25, 12653-12665 (2017). doi: 10.1364/OE.25.012653 |
| [151] | Wang, H. J. et al. Broadband silicon nitride nanophotonic phased arrays for wide-angle beam steering. Optics Letters 46, 286-289 (2021). doi: 10.1364/OL.411820 |
| [152] | Larocque, H. et al. Beam steering with ultracompact and low-power silicon resonator phase shifters. Optics Express 27, 34639-34654 (2019). doi: 10.1364/OE.27.034639 |