[1] |
Nguyen, J. et al. Robotic manipulators performing smart sanding operation: a vibration approach. Proceedings of 2022 International Conference on Robotics and Automation (ICRA). Philadelphia, PA, USA: IEEE, 2022, 2958-2964. |
[2] |
Schober, C. et al. Tilted wave fizeau interferometer for flexible and robust asphere and freeform testing. Light: Advanced Manufacturing 3, 48 (2022). |
[3] |
Wu, K. et al. Modelling of free-form conformal metasurfaces. Nature Communications 9, 3494 (2018). doi: 10.1038/s41467-018-05579-6 |
[4] |
Zhang, J. et al. Design of passive constant-force end-effector for robotic polishing of optical reflective mirrors. Chinese Journal of Mechanical Engineering 35, 141 (2022). doi: 10.1186/s10033-022-00811-3 |
[5] |
Li, J. et al. A high-bandwidth end-effector with active force control for robotic polishing. IEEE Access 8, 169122-169135 (2020). doi: 10.1109/ACCESS.2020.3022930 |
[6] |
Li, D. W. et al. Contact force plan and control of robotic grinding towards ensuring contour accuracy of curved surfaces. International Journal of Mechanical Sciences 227, 107449 (2022). doi: 10.1016/j.ijmecsci.2022.107449 |
[7] |
Zhu, D. H. et al. Robotic grinding of complex components: a step towards efficient and intelligent machining – challenges, solutions, and applications. Robotics and Computer-Integrated Manufacturing 65, 101908 (2020). doi: 10.1016/j.rcim.2019.101908 |
[8] |
Chen, C. et al. Intelligent learning model-based skill learning and strategy optimization in robot grinding and polishing. Science China Technological Sciences 65, 1957-1974 (2022). doi: 10.1007/s11431-022-2112-4 |
[9] |
Kana, S., Tee, K. P. & Campolo, D. Human-robot co-manipulation during surface tooling: a general framework based on impedance control, haptic rendering and discrete geometry. Robotics and Computer-Integrated Manufacturing 67, 102033 (2021). doi: 10.1016/j.rcim.2020.102033 |
[10] |
Abbatematteo, B. et al. Bootstrapping motor skill learning with motion planning. Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, 2021, 4926-4933. |
[11] |
Wang, N., Chen, C. Z. & Di Nuovo, A. A framework of hybrid force/motion skills learning for robots. IEEE Transactions on Cognitive and Developmental Systems 13, 162-170 (2021). doi: 10.1109/TCDS.2020.2968056 |
[12] |
Odesanmi, G. A., Wang, Q. N. & Mai, J. Skill learning framework for human–robot interaction and manipulation tasks. Robotics and Computer-Integrated Manufacturing 79, 102444 (2023). doi: 10.1016/j.rcim.2022.102444 |
[13] |
Wang, Y. et al. Al-promp: Force-relevant skills learning and generalization method for robotic polishing. Robotics and Computer-Integrated Manufacturing 82, 102538 (2023). doi: 10.1016/j.rcim.2023.102538 |
[14] |
Zhang, T. et al. An electromyography signals-based human-robot collaboration method for human skill learning and imitation. Journal of Manufacturing Systems 64, 330-343 (2022). doi: 10.1016/j.jmsy.2022.07.005 |
[15] |
Nagatsu, Y. & Hashimoto, H. Bilateral control by transmitting force information with application to time-delay systems and human motion reproduction. IEEJ Journal of Industry Applications 10, 165-177 (2021). doi: 10.1541/ieejjia.20004757 |
[16] |
Nagatsu, Y. & Katsura, S. Decoupling and performance enhancement of hybrid control for motion-copying system. IEEE Transactions on Industrial Electronics 64, 420-431 (2017). doi: 10.1109/TIE.2016.2596701 |
[17] |
Zhang, Z. Y., Y an, J. W. & Kuriyagawa, T. Manufacturing technologies toward extreme precision. International Journal of Extreme Manufacturing 1, 022001 (2019). doi: 10.1088/2631-7990/ab1ff1 |
[18] |
Geng, Z. C., Tong, Z. & Jiang, X. Q. Review of geometric error measurement and compensation techniques of ultra-precision machine tools. Light: Advanced Manufacturing 2, 14 (2021). |
[19] |
Miura, K., Matsui, A. & Katsura, S. Synthesis of motion-reproduction systems based on motion-copying system considering control stiffness. IEEE/ASME Transactions on Mechatronics 21, 1015-1023 (2016). doi: 10.1109/TMECH.2015.2478897 |
[20] |
Yajima, S. & Katsura, S. Multi-DOF motion reproduction using motion-copying system with velocity constraint. IEEE Transactions on Industrial Electronics 61, 3765-3775 (2014). doi: 10.1109/TIE.2013.2286086 |
[21] |
Sun, X. B. et al. Online motion modification by operator in motion reproduction system. Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society. Singapore: IEEE, 2020, 668-673. |
[22] |
Zhang, Y. et al. A neural network based framework for variable impedance skills learning from demonstrations. Robotics and Autonomous Systems 160, 104312 (2023). doi: 10.1016/j.robot.2022.104312 |
[23] |
Thompson, J., Kasun Prasanga, D. & Murakami, T. Identification of unknown object properties based on tactile motion sequence using 2-finger gripper robot. Precision Engineering 74, 347-357 (2022). doi: 10.1016/j.precisioneng.2021.12.009 |
[24] |
Sariyildiz, E. & Ohnishi, K. Stability and robustness of disturbance-observer-based motion control systems. IEEE Transactions on Industrial Electronics 62, 414-422 (2015). |
[25] |
Tian, D. P. et al. An adaptive switching-gain sliding-mode- assisted disturbance observer for high-precision servo control. IEEE Transactions on Industrial Electronics 69, 1762-1772 (2022). doi: 10.1109/TIE.2021.3057004 |
[26] |
Sariyildiz, E., Oboe, R. & Ohnishi, K. Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Transactions on Industrial Electronics 67, 2042-2053 (2020). doi: 10.1109/TIE.2019.2903752 |
[27] |
Zhu, Y. K., Qiao, J. Z. & Guo, L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing. IEEE Transactions on Industrial Electronics 66, 1973-1983 (2019). doi: 10.1109/TIE.2018.2838065 |
[28] |
Tian, D. P. & Ni, S. Q. Bilateral force sensorless control based on finite-time adaptive sliding-mode-assisted disturbance observer. IET Control Theory & Applications 15, 2355-2365 (2021). |
[29] |
Heck, D. et al. Guaranteeing stable tracking of hybrid position force trajectories for a robot manipulator interacting with a stiff environment. Automatica 63, 235-247 (2016). doi: 10.1016/j.automatica.2015.10.029 |