[1] Qin, X., Liu, X. W., Huang, W., Bettinelli, M. & Liu, X. G. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects. Chem. Rev. 117, 4488-4527 (2017). doi: 10.1021/acs.chemrev.6b00691
[2] George, N. C., Denault, K. A. & Seshadri, R. Phosphors for solid-state white lighting. Annu Rev. Mater. Res. 43, 481-501 (2013). doi: 10.1146/annurev-matsci-073012-125702
[3] Li, G. G., Tian, Y., Zhao, Y. & Lin, J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44, 8688-8713 (2015). doi: 10.1039/C4CS00446A
[4] Lin, C. C. & Liu, R. S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2, 1268-1277 (2011). doi: 10.1021/jz2002452
[5] George, N. C. et al. Local environments of dilute activator ions in the solid-state lighting phosphor Y3-xCexAl5O12. Chem. Mater. 25, 3979-3995 (2013). doi: 10.1021/cm401598n
[6] Liu, Y. S. et al. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 22, 3266-3271 (2010). doi: 10.1002/adma.201000128
[7] Tao, Z. X. et al. Photoluminescence properties of Eu3+-doped glaserite-type orthovanadates CsK2Gd(VO4)2. Inorg. Chem. 53, 4161-4168 (2014). doi: 10.1021/ic500208h
[8] Grigorjevaite, J. & Katelnikovas, A. luminescence and luminescence quenching of K2Bi(PO4)(MoO4):Eu3+ phosphors with efficiencies close to unity. ACS Appl. Mater. Interfaces 8, 31772-31782 (2016). doi: 10.1021/acsami.6b11766
[9] Park, W. B., Singh, S. P., Yoon, C. & Sohn, K. S. Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+. J. Mater. Chem. C 1, 1832-1839 (2013). doi: 10.1039/c2tc00731b
[10] Wang, L., Xie, R. J., Suehiro, T., Takeda, T. & Hirosaki, N. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem. Rev. 118, 1951-2009 (2018). doi: 10.1021/acs.chemrev.7b00284
[11] Park, W. B., Singh, S. P. & Sohn, K. S. Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si, Al)5(O, N)8:Eu2+. J. Am. Chem. Soc. 136, 2363-2373 (2014). doi: 10.1021/ja409865c
[12] Pust, P. et al. Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13, 891-896 (2014).
[13] Zhang, X. J. et al. Facile atmospheric pressure synthesis of high thermal stability and narrow-band red-emitting SrLiAl3N4:Eu2+ phosphor for high color rendering index white light-emitting diodes. ACS Appl. Mater. Interfaces 8, 19612-19617 (2016). doi: 10.1021/acsami.6b05485
[14] Fang, M. H. et al. Control of luminescence by tuning of crystal symmetry and local structure in Mn4+-activated narrow band fluoride phosphors. Angew. Chem. Int. Ed. 57, 1797-1801 (2018). doi: 10.1002/anie.201708814
[15] Huang, L. et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1-xF6:xMn4+ for warm white light-emitting diodes. Chem. Mater. 28, 1495-1502 (2016). doi: 10.1021/acs.chemmater.5b04989
[16] Han, J. et al. Redefinition of crystal structure and Bi3+ yellow luminescence with strong near-ultraviolet excitation in La3BWO9:Bi3+ phosphor for white light-emitting diodes. ACS Appl. Mater. Interfaces 10, 13660-13668 (2018). doi: 10.1021/acsami.8b00808
[17] Kang, F. W. et al. Red photoluminescence from Bi3+ and the influence of the oxygen-vacancy perturbation in ScVO4: a combined experimental and theoretical study. J. Phys. Chem. C 118, 7515-7522 (2014). doi: 10.1021/jp4081965
[18] Han, J. et al. Toward Bi3+ red luminescence with no visible reabsorption through manageable energy interaction and crystal defect modulation in single Bi3+-doped ZnWO4 crystal. Chem. Mater. 29, 8412-8424 (2017). doi: 10.1021/acs.chemmater.7b02979
[19] Kang, F. W. et al. Broadly tuning Bi3+ emission via crystal field modulation in solid solution compounds (Y, Lu, Sc)VO4: Bi for ultraviolet converted white LEDs. J. Mater. Chem. C 2, 6068-6076 (2014).
[20] Kang, F. W. et al. Band-gap modulation in single Bi3+-doped yttrium-scandium-niobium vanadates for color tuning over the whole visible spectrum. Chem. Mater. 28, 2692-2703 (2016). doi: 10.1021/acs.chemmater.6b00277
[21] Kang, F. W., Peng, M. Y., Zhang, Q. Y. & Qiu, J. R. Abnormal anti-quenching and controllable multi-transitions of Bi3+ luminescence by temperature in a yellow-emitting LuVO4:Bi3+ phosphor for UV-converted white LEDs. Chem. Eur. J. 20, 11522-11530 (2014). doi: 10.1002/chem.201402081
[22] Kang, F. W. et al. Broadly tunable emission from CaMoO4:Bi phosphor based on locally modifying the microenvironment around Bi3+ ions. Eur. J. Inorg. Chem. 2014, 1373-1380 (2014). doi: 10.1002/ejic.201301481
[23] Zhang, K. et al. Giant enhancement of luminescence from phosphors through oxygen-vacancy-mediated chemical pressure relaxation. Adv. Opt. Mater. 5, 1700448 (2017). doi: 10.1002/adom.201700448
[24] Kang, F. W., Zhang, Y. & Peng, M. Y. Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu3+, Bi3+ phosphor for ultraviolet converted LEDs. Inorg. Chem. 54, 1462-1473 (2015). doi: 10.1021/ic502439k
[25] Liu, L. L. et al. K5Ba10(BO3)8F: a new potassium barium borate fluoride with a perovskite-like structure. J. Phys. Chem. C 120, 18763-18770 (2016). doi: 10.1021/acs.jpcc.6b05489
[26] Qin, X. X. et al. A novel NIR long phosphorescent phosphor:SrSnO3:Bi2+. RSC Adv. 5, 101347-101352 (2015). doi: 10.1039/C5RA22375J
[27] Zhou, G. J. et al. Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence. ACS Appl. Mater. Interfaces 10, 24648-24655 (2018). doi: 10.1021/acsami.8b08129
[28] Kim, Y. H. et al. A zero-thermal-quenching phosphor. Nat. Mater. 16, 543-550 (2017). doi: 10.1038/nmat4843
[29] Zhao, M. et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2:Eu2+ phosphor for backlight display application. Adv Mater 30, 1802489 (2018). doi: 10.1002/adma.201802489
[30] Bernard, A., Zhang, K. Y., Larson, D., Tabatabaei, K. & Kauzlarich, S. M. Solvent effects on growth, crystallinity, and surface bonding of Ge nanoparticles. Inorg. Chem. 57, 5299-5306 (2018). doi: 10.1021/acs.inorgchem.8b00334
[31] Li, X. Y., Wang, Y. L., Liu, W. F., Jiang, G. S. & Zhu, C. F. Study of oxygen vacancies' influence on the lattice parameter in ZnO thin film. Mater. Lett. 85, 25-28 (2012). doi: 10.1016/j.matlet.2012.06.107
[32] Chen, M. Y., Xia, Z. G., Molokeev, M. S., Wang, T. & Liu, Q. L. Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2-(1-x)Ca10Li(PO4)7:Eu2+ phosphors. Chem. Mater. 29, 1430-1438 (2017). doi: 10.1021/acs.chemmater.7b00006
[33] Tang, Z. B., Zhang, G. Y. & Wang, Y. H. Design and development of a bluish-green luminescent material (K2HfSi3O9:Eu2+) with robust thermal stability for white light-emitting diodes. ACS Photonics 5, 3801-3813 (2018). doi: 10.1021/acsphotonics.8b00844
[34] Li, X. et al. Color-tunable luminescence properties of Bi3+ in Ca5(BO3)3F via changing site occupation and energy transfer. Chem. Mater. 29, 8792-8803 (2017). doi: 10.1021/acs.chemmater.7b03151