[1] Hunt, J. P. et al. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions. Analyst 142, 4595–4600 (2017). doi: 10.1039/C7AN01540B
[2] Ismail, N. A. H. et al. Quantification of multi-classes of endocrine-disrupting compounds in estuarine water. Environ. Pollut. 249, 1019–1028 (2019). doi: 10.1016/j.envpol.2019.03.089
[3] Yao, B. et al. Occurrence and estrogenic activity of steroid hormones in Chinese streams: a nationwide study based on a combination of chemical and biological tools. Environ. Int. 118, 1–8 (2018). doi: 10.1016/j.envint.2018.05.026
[4] Memon, A. G. et al. Ultrasensitive colorimetric aptasensor for Hg2+ detection using Exo-III assisted target recycling amplification and unmodified AuNPs as indicators. J. Hazard. Mater. 384, 120948 (2020). doi: 10.1016/j.jhazmat.2019.120948
[5] Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997). doi: 10.1038/39645
[6] Rodriguez-Mozaz, S. et al. Biosensors for environmental monitoring of endocrine disruptors: a review article. Anal. Bioanal. Chem. 378, 588–598 (2004). doi: 10.1007/s00216-003-2385-0
[7] Björnström, L. & Sjöberg, M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 19, 833–842 (2005). doi: 10.1210/me.2004-0486
[8] Carvalho, R. N. et al. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol. Sci. 141, 218–233 (2014). doi: 10.1093/toxsci/kfu118
[9] Seifert, M., Haindl, S. & Hock, B. Development of an enzyme linked receptor assay (ELRA) for estrogens and xenoestrogens. Anal. Chim. Acta 386, 191–199 (1999). doi: 10.1016/S0003-2670(99)00044-6
[10] Garrett, S. D., Lee, H. A. & Morgan, M. R. A. A nonisotopic estrogen receptor–based assay to detect estrogenic compounds. Nat. Biotechnol. 17, 1219–1222 (1999). doi: 10.1038/70773
[11] Shelby, M. D. et al. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ. Health Perspect. 104, 1296–1300 (1996). doi: 10.1289/ehp.961041296
[12] Kuiper, G. G. J. M. et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138, 863–870 (1997). doi: 10.1210/endo.138.3.4979
[13] Liu, L. H. et al. Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor. Biosens. Bioelectron. 97, 16–20 (2017). doi: 10.1016/j.bios.2017.05.026
[14] Liu, L. H. et al. Triple functional small-molecule-protein conjugate mediated optical biosensor for quantification of estrogenic activities in water samples. Environ. Int. 132, 105091 (2019). doi: 10.1016/j.envint.2019.105091
[15] La Spina, R. et al. Label-free biosensor detection of endocrine disrupting compounds using engineered estrogen receptors. Biosensors 8, 1 (2018). doi: 10.3390/bios8010001
[16] Fechner, P. et al. An advanced biosensor for the prediction of estrogenic effects of endocrine-disrupting chemicals on the estrogen receptor alpha. Anal. Bioanal. Chem. 393, 1579–1585 (2009). doi: 10.1007/s00216-008-2480-3
[17] Gao, Y., Li, X. X. & Guo, L. H. Assessment of estrogenic activity of perfluoroalkyl acids based on ligand-induced conformation state of human estrogen receptor. Environ. Sci. Technol. 47, 634–641 (2013). doi: 10.1021/es304030x
[18] Mo, Z. H., Long, X. H. & Fu, W. L. A new sandwich-type assay of estrogen using piezoelectric biosensor immobilized with estrogen response element. Anal. Commun. 36, 281–283 (1999). doi: 10.1039/a902872b
[19] Murata, M. et al. Novel biosensor for the rapid measurement of estrogen based on a ligand-receptor interaction. Anal. Sci. 17, 387–390 (2001). doi: 10.2116/analsci.17.387
[20] Xia, W. et al. Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles. Biosens. Bioelectron. 25, 2253–2258 (2010). doi: 10.1016/j.bios.2010.03.004
[21] Asano, H., Maeda, T. & Shiraishi, Y. Sensitive determination of hexavalent chromium using a microfluidic paper-based analytical device with solid phase extraction. Bunseki Kagaku 70, 379–383 (2021). doi: 10.2116/bunsekikagaku.70.379
[22] Caucheteur, C., Guo, T. & Albert, J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407, 3883–3897 (2015). doi: 10.1007/s00216-014-8411-6
[23] Allsop, T. D. P. et al. An ultra-sensitive aptasensor on optical fibre for the direct detection of bisphenol A. Biosens. Bioelectron. 135, 102–110 (2019). doi: 10.1016/j.bios.2019.02.043
[24] Lamarca, R. S. et al. Label-free ultrasensitive and environment-friendly immunosensor based on a silica optical fiber for the determination of ciprofloxacin in wastewater samples. Anal. Chem. 92, 14415–14422 (2020). doi: 10.1021/acs.analchem.0c02355
[25] Pollet, J. et al. Fiber optic SPR biosensing of DNA hybridization and DNA–protein interactions. Biosens. Bioelectron. 25, 864–869 (2009). doi: 10.1016/j.bios.2009.08.045
[26] Albert, J. et al. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 7, 83–108 (2013). doi: 10.1002/lpor.201100039
[27] Guo, T. Fiber grating-assisted surface Plasmon resonance for biochemical and electrochemical sensing. J. Lightwave Technol. 35, 3323–3333 (2017). doi: 10.1109/JLT.2016.2590879
[28] Caucheteur, C. et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 7, 13371 (2016). doi: 10.1038/ncomms13371
[29] Cai, S. S. et al. Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection. Sci. China Inf. Sci. 63, 222401 (2020). doi: 10.1007/s11432-020-3058-2
[30] Chen, Y. Y. et al. Optical biosensors based on refractometric sensing schemes: a review. Biosens. Bioelectron. 144, 111693 (2019). doi: 10.1016/j.bios.2019.111693
[31] Zhu, Q. et al. In silico study of molecular mechanisms of action: estrogenic disruptors among phthalate esters. Environ. Pollut. 255, 113193 (2019). doi: 10.1016/j.envpol.2019.113193
[32] Erdogan, T. & Sipe, J. E. Tilted fiber phase gratings. J. Optical Soc. Am. A 13, 296–313 (1996). doi: 10.1364/JOSAA.13.000296
[33] Fu, L. et al. Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs. ACS Sens. 6, 3013–3023 (2021). https://doi.org/10.1021/acssensors.1c00906.
[34] Chiavaioli, F. et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens. 3, 936–943 (2018). doi: 10.1021/acssensors.7b00918
[35] Chiavaioli, F. et al. Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors. Biosensors 7, 23 (2017). doi: 10.3390/bios7020023
[36] Takeuchi, S. et al. Differential effects of phthalate esters on transcriptional activities via human estrogen receptors α and β, and androgen receptor. Toxicology 210, 223–233 (2005). doi: 10.1016/j.tox.2005.02.002
[37] Zhou, X. H. et al. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples. Sci. Rep. 4, 4572 (2014).
[38] Guo, T. et al. Plasmonic optical fiber-grating immunosensing: a review. Sensors 17, 2732 (2017). doi: 10.3390/s17122732
[39] Yuan, Y. et al. Electrochemical surface Plasmon resonance fiber-optic sensor: in situ detection of electroactive biofilms. Anal. Chem. 88, 7609–7616 (2016). doi: 10.1021/acs.analchem.6b01314
[40] Lao, J. J. et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light. Sci. Appl. 7, 34 (2018). doi: 10.1038/s41377-018-0040-y
[41] Si, Y. et al. Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection. J. Lightwave Technol. 37, 3495–3502 (2019). doi: 10.1109/JLT.2019.2917329
[42] Zhang, X. J. et al. In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared. J. Mater. Chem. C 6, 5161–5170 (2018). doi: 10.1039/C8TC01278D
[43] Shi, Y. Z. et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light. Sci. Appl. 9, 62 (2020). doi: 10.1038/s41377-020-0293-0
[44] Toropov, N. et al. Review of biosensing with whispering-gallery mode lasers. Light. Sci. Appl. 10, 42 (2021). doi: 10.1038/s41377-021-00471-3
[45] Pan, T. et al. Biophotonic probes for bio-detection and imaging. Light. Sci. Appl. 10, 124 (2021). doi: 10.1038/s41377-021-00561-2
[46] Fang, H. et al. Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem. Res. Toxicol. 14, 280–294 (2001). doi: 10.1021/tx000208y
[47] Wang, R. Y. et al. T–T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+. Biosens. Bioelectron. 78, 418–422 (2016). doi: 10.1016/j.bios.2015.11.082
[48] Wang, D. et al. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens. Biosens. Bioelectron. 55, 391–395 (2014). doi: 10.1016/j.bios.2013.12.050
[49] Hock, B., Seifert, M. & Kramer, K. Engineering receptors and antibodies for biosensors. Biosens. Bioelectron. 17, 239–249 (2002). doi: 10.1016/S0956-5663(01)00267-6
[50] Habauzit, D. et al. Determination of estrogen presence in water by SPR using estrogen receptor dimerization. Anal. Bioanal. Chem. 390, 873–883 (2008). doi: 10.1007/s00216-007-1725-x