[1] Harris, S.E. Electromagnetically Induced Transparency. Physics Today 50, 36-42 (1997).
[2] Novikova, I., Walsworth, R.L. & Xiao, Y. Electromagnetically induced transparency‐based slow and stored light in warm atoms. Laser & Photonics Reviews 6, 333-353 (2012).
[3] Hau, L.V. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594-598 (1999). doi: 10.1038/17561
[4] Vudyasetu, P.K., Camacho, R.M. & Howell, J.C. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Physical review letters 100, 123903 (2008). doi: 10.1103/PhysRevLett.100.123903
[5] Shuker, M. et al. Storing images in warm atomic vapor. Physical review letters 100, 223601 (2008). doi: 10.1103/PhysRevLett.100.223601
[6] Heinze, G., Hubrich, C. & Halfmann, T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Physical review letters 111, 033601 (2013). doi: 10.1103/PhysRevLett.111.033601
[7] Garrido Alzar, C., Martinez, M. & Nussenzveig, P. Classical analog of electromagnetically induced transparency. American Journal of Physics 70, 37-41 (2002). doi: 10.1119/1.1412644
[8] Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Physical review letters 96, 123901 (2006). doi: 10.1103/PhysRevLett.96.123901
[9] Yang, X. et al. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Physical review letters 102, 173902 (2009). doi: 10.1103/PhysRevLett.102.173902
[10] Zhang, S. et al. Plasmon-induced transparency in metamaterials. Physical review letters 101, 047401 (2008). doi: 10.1103/PhysRevLett.101.047401
[11] Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature materials 8, 758-762 (2009). doi: 10.1038/nmat2495
[12] Kekatpure, R.D. et al. Phase-coupled plasmon-induced transparency. Physical review letters 104, 243902 (2010). doi: 10.1103/PhysRevLett.104.243902
[13] Kim, T.-T. et al. Electrically tunable slow light using graphene metamaterials. ACS Photonics 5, 1800-1807 (2018). doi: 10.1021/acsphotonics.7b01551
[14] Singh, R. et al. Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Physical Review B 79, 085111 (2009). doi: 10.1103/PhysRevB.79.085111
[15] Chiam, S.-Y. et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Physical Review B 80, 153103 (2009). doi: 10.1103/PhysRevB.80.153103
[16] Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photonics 7, 791-795 (2013). doi: 10.1038/nphoton.2013.214
[17] Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano letters 14, 1394-1399 (2014). doi: 10.1021/nl4044482
[18] Fan, P. et al. Optical Fano resonance of an individual semiconductor nanostructure. Nature materials 13, 471-475 (2014). doi: 10.1038/nmat3927
[19] Miroshnichenko, A.E. & Kivshar, Y.S. Fano resonances in all-dielectric oligomers. Nano letters 12, 6459-6463 (2012). doi: 10.1021/nl303927q
[20] Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nature communications 5, 1-9 (2014).
[21] Zhang, J., MacDonald, K.F. & Zheludev, N.I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Optics express 21, 26721-26728 (2013). doi: 10.1364/OE.21.026721
[22] Nemati, A. et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances 1, 180009 (2018). doi: 10.29026/oea.2018.180009
[23] Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik 330, 377-445 (1908). doi: 10.1002/andp.19083300302
[24] Evlyukhin, A.B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano letters 12, 3749-3755 (2012). doi: 10.1021/nl301594s
[25] Tian, J. et al. Near‐Infrared Super‐Absorbing All‐Dielectric Metasurface Based on Single‐Layer Germanium Nanostructures. Laser & Photonics Reviews 12, 1800076 (2018). doi: 10.1002/lpor.201800076
[26] Komar, A. et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Applied Physics Letters 110, 071109 (2017). doi: 10.1063/1.4976504
[27] Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS nano 9, 4308-4315 (2015). doi: 10.1021/acsnano.5b00723
[28] Shcherbakov, M.R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano letters 15, 6985-6990 (2015). doi: 10.1021/acs.nanolett.5b02989
[29] Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano letters 15, 7388-7393 (2015). doi: 10.1021/acs.nanolett.5b02802
[30] Makarov, S. et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano letters 15, 6187-6192 (2015). doi: 10.1021/acs.nanolett.5b02534
[31] Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566-1569 (2012). doi: 10.1126/science.1221561
[32] Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature materials 6, 824-832 (2007). doi: 10.1038/nmat2009
[33] Bakan, G. et al. Extracting the temperature distribution on a phase-change memory cell during crystallization. Journal of Applied Physics 120, 164504 (2016). doi: 10.1063/1.4966168
[34] Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature materials 7, 653-658 (2008). doi: 10.1038/nmat2226
[35] Ahmadivand, A. et al. Optical switching using transition from dipolar to charge transfer plasmon modes in Ge 2 Sb 2 Te 5 bridged metallodielectric dimers. Scientific reports 7, 1-8 (2017). doi: 10.1038/s41598-016-0028-x
[36] Zhu, W. et al. Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge 2 Sb 2 Te 5. Nanoscale 12, 8758-8767 (2020). doi: 10.1039/C9NR09889E
[37] Gerislioglu, B. et al. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Materials Today Physics 12, 100178 (2020). doi: 10.1016/j.mtphys.2020.100178
[38] Michel, A.-K.U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano letters 13, 3470-3475 (2013). doi: 10.1021/nl4006194
[39] Michel, A.-K.U. et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. Acs Photonics 1, 833-839 (2014). doi: 10.1021/ph500121d
[40] Michel, A.K.U. et al. Advanced Optical Programming of Individual Meta‐Atoms Beyond the Effective Medium Approach. Advanced Materials 31, 1901033 (2019). doi: 10.1002/adma.201901033
[41] Michel, A.K.U. et al. The Potential of Combining Thermal Scanning Probes and Phase‐Change Materials for Tunable Metasurfaces. Advanced Optical Materials 9, 2001243 (2021). doi: 10.1002/adom.202001243
[42] Sreekanth, K.V., Han, S. & Singh, R. Ge2Sb2Te5‐Based Tunable Perfect Absorber Cavity with Phase Singularity at Visible Frequencies. Advanced Materials 30, 1706696 (2018). doi: 10.1002/adma.201706696
[43] Sreekanth, K.V. et al. Phase‐change‐material‐based low‐loss visible‐frequency hyperbolic metamaterials for ultrasensitive label‐free biosensing. Advanced Optical Materials 7, 1900081 (2019). doi: 10.1002/adom.201900081
[44] Sreekanth, K.V. et al. Electrically Tunable Singular Phase and Goos–Hänchen Shifts in Phase‐Change‐Material‐Based Thin‐Film Coatings as Optical Absorbers. Advanced Materials 33, 2006926 (2021). doi: 10.1002/adma.202006926
[45] Pitchappa, P. et al. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices. Advanced Functional Materials 200(2021), (2100). doi: 10.1002/adfm.202100200
[46] Pitchappa, P. et al. Chalcogenide phase change material for active terahertz photonics. Advanced Materials 31, 1808157 (2019). doi: 10.1002/adma.201808157
[47] Cao, T. et al. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. JOSA B 30, 1580-1585 (2013). doi: 10.1364/josab.30.001580
[48] Qu, Y. et al. Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase‐Changing Material GST. Laser & Photonics Reviews 11, 1700091 (2017). doi: 10.1002/lpor.201700091
[49] Cao, T. et al. Tuneable thermal emission using chalcogenide metasurface. Advanced Optical Materials 6, 1800169 (2018). doi: 10.1002/adom.201800169
[50] Gholipour, B. et al. An all‐optical, nonvolatile, bidirectional, phase‐change meta‐switch. Advanced materials 25, 3050-3054 (2013). doi: 10.1002/adma.201300588
[51] Karvounis, A. et al. All-dielectric phase-change reconfigurable metasurface. Applied Physics Letters 109, 051103 (2016). doi: 10.1063/1.4959272
[52] Chu, C.H. et al. Active dielectric metasurface based on phase‐change medium. Laser & Photonics Reviews 10, 986-994 (2016). doi: 10.1002/lpor.201600106
[53] de Galarreta, C.R. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476-484 (2020). doi: 10.1364/OPTICA.384138
[54] Petronijevic, E. & Sibilia, C. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials. Optics express 24, 30411-30420 (2016). doi: 10.1364/OE.24.030411
[55] Tian, J. et al. Active control of anapole states by structuring the phase-change alloy Ge 2 Sb 2 Te 5. Nature communications 10, 1-9 (2019). doi: 10.1038/s41467-018-07882-8
[56] Leitis, A. et al. All‐Dielectric Programmable Huygens' Metasurfaces. Advanced Functional Materials 30, 1910259 (2020). doi: 10.1002/adfm.201910259
[57] Agrawal, G.P. Fiber-optic communication systems (John Wiley & Sons, 2012). doi: 10.1002/9780470152560.ch8
[58] Agrawal, G.P. in Nonlinear Science at the Dawn of the 21st Century 195-211 (Springer, 2000).
[59] Stanley, R. Plasmonics in the mid-infrared. Nature Photonics 6, 409-411 (2012). doi: 10.1038/nphoton.2012.161
[60] Yin, X. et al. Active chiral plasmonics. Active chiral plasmonics. Nano letters 15, 4255-4260 (2015). doi: 10.1021/nl5042325
[61] Tittl, A. et al. A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials 27, 4597-4603 (2015). doi: 10.1002/adma.201502023
[62] Yannopapas, V., Paspalakis, E. & Vitanov, N.V. Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Physical Review B 80, 035104 (2009). doi: 10.1103/PhysRevB.80.035104
[63] Kindness, S.J. et al. Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning. Advanced Optical Materials 6, 1800570 (2018). doi: 10.1002/adom.201800570
[64] Gu, J. et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature communications 3, 1-6 (2012).
[65] Liu, N. et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano letters 10, 1103-1107 (2010). doi: 10.1021/nl902621d
[66] Abujetas, D.R. et al. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces. Optica 6, 996-1001 (2019). doi: 10.1364/OPTICA.6.000996
[67] Ospanova, A.K., Stenishchev, I.V. & Basharin, A.A. Anapole mode sustaining silicon metamaterials in visible spectral range. Laser & Photonics Reviews 12, 1800005 (2018). doi: 10.1002/lpor.201800005
[68] Zhou, C. et al. Multiple toroidal dipole Fano resonances of asymmetric dielectric nanohole arrays. Physical Review B 100, 195306 (2019). doi: 10.1103/PhysRevB.100.195306
[69] JunáHe, X. & HuiáZhao, C. A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles. RSC advances 7, 55897-55904 (2017). doi: 10.1039/C7RA11175D
[70] Fedotov, V.A. et al. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Scientific reports 3, 1-5 (2013). doi: 10.1038/srep02967
[71] Raoux, S. Phase change materials. Annual Review of Materials Research 39, 25-48 (2009). doi: 10.1146/annurev-matsci-082908-145405
[72] Terao, M., Morikawa, T. & Ohta, T. Electrical phase-change memory: fundamentals and state of the art. Japanese Journal of Applied Physics 48, 080001 (2009). doi: 10.1143/JJAP.48.080001
[73] FDTD. Solutions. at http://www.lumerical.com.
[74] Palik, E.D. Handbook of optical constants of solids (Academic press, 1998). doi: 10.1016/c2009-0-20920-2
[75] Yuan, S. et al. Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor. ACS nano 11, 10704-10711 (2017). doi: 10.1021/acsnano.7b04810
[76] Mikheeva, E. et al. Photosensitive chalcogenide metasurfaces supporting bound states in the continuum. Optics Express 27, 33847-33853 (2019). doi: 10.1364/OE.27.033847
[77] Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nature materials 10, 202-208 (2011). doi: 10.1038/nmat2934
[78] San-Román-Alerigi, D.P. et al. Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film. Journal of Applied Physics 113, 044116 (2013). doi: 10.1063/1.4789602
[79] Dong, W. et al. Tunable mid‐infrared phase‐change metasurface. Advanced Optical Materials 6, 1701346 (2018). doi: 10.1002/adom.201701346
[80] Wu, P.C. et al. Optical anapole metamaterial. Optical anapole metamaterial. ACS nano 12, 1920-1927 (2018). doi: 10.1021/acsnano.7b08828
[81] Liu, C. et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490-493 (2001). doi: 10.1038/35054017
[82] Lu, H., Liu, X. & Mao, D. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Physical Review A 85, 053803 (2012). doi: 10.1103/PhysRevA.85.053803
[83] Chen, X. et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Physical review E 70, 016608 (2004). doi: 10.1103/PhysRevE.70.016608
[84] Hawlová, P. et al. Photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system. Scientific reports 5, 1-7 (2015). doi: 10.9734/JSRR/2015/14076
[85] Yee, K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation 14, 302-307 (1966). doi: 10.1109/TAP.1966.1138693
[86] Zheng, F., Chen, Z. & Zhang, J. A finite-difference time-domain method without the Courant stability conditions. IEEE Microwave and Guided wave letters 9, 441-443 (1999). doi: 10.1109/75.808026