[1] Soref, R., Buca, D. & Yu, S. Q. Group Ⅳ photonics: driving integrated optoelectronics. Opt. Photonics News 27, 32–39 (2016). http://www.osapublishing.org/viewmedia.cfm?uri=opn-27-1-32&seq=0
[2] Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003
[3] Wang, Z. C. et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev. 11, 1700063 (2017). doi: 10.1002/lpor.201700063
[4] Seifried, M. et al. Monolithically integrated CMOS-compatible Ⅲ-Ⅴ on silicon lasers. IEEE J. Sel. Top. Quantum Electron. 24, 8200709 (2018). http://ieeexplore.ieee.org/document/8353716/citations
[5] Elbaz, A. et al. Reduced lasing thresholds in GeSn microdisk cavities with defect management of the optically active region. ACS Photonics 7, 2713–2722 (2020). doi: 10.1021/acsphotonics.0c00708
[6] Zhou, Y. Y. et al. Electrically injected GeSn lasers on Si operating up to 100 K. Optica 7, 924–928 (2020). doi: 10.1364/OPTICA.395687
[7] Zhou, Y. Y. et al. Optically pumped GeSn lasers operating at 270 K with broad waveguide structures on Si. ACS Photonics 6, 1434–1441 (2019). doi: 10.1021/acsphotonics.9b00030
[8] Wirths, S. et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics 9, 88–92 (2015). doi: 10.1038/nphoton.2014.321
[9] Singh, V. et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 15, 014603 (2014). doi: 10.1088/1468-6996/15/1/014603
[10] Hodgkinson, J. & Tatam, R. P. Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013). doi: 10.1088/0957-0233/24/1/012004
[11] Reboud, V. et al. Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K. Appl. Phys. Lett. 111, 092101 (2017).
[12] Al-Kabi, S. et al. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K. Appl. Phys. Lett. 109, 171105 (2016). doi: 10.1063/1.4966141
[13] Dou, W. et al. Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth. Sci. Rep. 8, 5640 (2018). doi: 10.1038/s41598-018-24018-6
[14] von den Driesch, N. et al. Direct bandgap group Ⅳ epitaxy on Si for laser applications. Chem. Mater. 27, 4693–4702 (2015). doi: 10.1021/acs.chemmater.5b01327
[15] Gupta, S. et al. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys. 113, 073707 (2013). doi: 10.1063/1.4792649
[16] Pezzoli, F. et al. Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers. ACS Photonics 3, 2004–2009 (2016). doi: 10.1021/acsphotonics.6b00438
[17] Stange, D. et al. Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells. Optica 4, 185–188 (2017). doi: 10.1364/OPTICA.4.000185
[18] Stange, D. et al. GeSn/SiGeSn heterostructure and multi quantum well lasers. ACS Photonics 5, 4628–4636 (2018). doi: 10.1021/acsphotonics.8b01116
[19] Grant, P. C. et al. Direct bandgap type-Ⅰ GeSn/GeSn quantum well on a GeSn- and Ge- buffered Si substrate. AIP Adv. 8, 025104 (2018). doi: 10.1063/1.5020035
[20] Thai, Q. M. et al. GeSn heterostructure micro-disk laser operating at 230 K. Opt. Express 26, 32500–32508 (2018). doi: 10.1364/OE.26.032500
[21] Du, W. et al. Study of Si-based GeSn optically pumped lasers with micro-disk and ridge waveguide structures. Front. Phys. 7, 147 (2019). doi: 10.3389/fphy.2019.00147
[22] Elbaz, A. et al. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nat. Photonics 14, 375–382, https://doi.org/10.1038/s41566-020-0601-5 (2020).
[23] Thai, Q. M. et al. GeSn optical gain and lasing characteristics modelling. Phys. Rev. B 102, 155203 (2020). doi: 10.1103/PhysRevB.102.155203
[24] Rainko, D. et al. Impact of tensile strain on low Sn content GeSn lasing. Sci. Rep. 9, 259 (2019). doi: 10.1038/s41598-018-36837-8
[25] Ghrib, A. et al. Tensile-strained germanium microdisks. Appl. Phys. Lett. 102, 221112 (2013). doi: 10.1063/1.4809832
[26] Ghrib, A. et al. All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities. Adv. Opti. Mater. 3, 353–358 (2015). doi: 10.1002/adom.201400369
[27] Elbaz, A. et al. Germanium microlasers on metallic pedestals. APL Photonics 3, 106102 (2018). doi: 10.1063/1.5025705
[28] Armand Pilon, F. T. et al. Lasing in strained germanium microbridges. Nat. Commun. 10, 2724 (2019). doi: 10.1038/s41467-019-10655-6
[29] Süess, M. J. et al. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics 7, 466–472 (2013). doi: 10.1038/nphoton.2013.67
[30] Nam, D. et al. Study of carrier statistics in uniaxially strained Ge for a low-threshold Ge laser. IEEE J. Sel. Top. Quantum Electron. 20, 16–22 (2014). doi: 10.1109/JSTQE.2013.2293764
[31] Imbrenda, D. et al. Infrared dielectric response, index of refraction, and absorption of germanium-tin alloys with tin contents up to 27% deposited by molecular beam epitaxy. Appl. Phys. Lett. 113, 122104 (2018). doi: 10.1063/1.5040853
[32] Chrétien, J. et al. GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain. ACS Photonics 6, 2462–2469 (2019). doi: 10.1021/acsphotonics.9b00712
[33] Elbaz, A. et al. Solving thermal issues in tensile-strained Ge microdisks. Opt. Express 26, 28376–28384 (2018). doi: 10.1364/OE.26.028376
[34] Moutanabbir, O. et al. Monolithic infrared silicon photonics: the rise of (Si)GeSn semiconductors. Appl. Phys. Lett. 118, 110502 (2021). doi: 10.1063/5.0043511
[35] Tabataba-Vakili, F. et al. Analysis of low-threshold optically pumped Ⅲ-nitride microdisk lasers. Appl. Phys. Lett. 117, 121103 (2020). doi: 10.1063/5.0015252
[36] Baba, T. & Sano, D. Low-threshold lasing and Purcell effect in microdisk lasers at room temperature. IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003). doi: 10.1109/JSTQE.2003.819464
[37] Baba, T. et al. Spontaneous emission factor of a microcavity DBR surface-emitting laser. IEEE J. Quantum Electron. 27, 1347–1358 (1991). doi: 10.1109/3.89951
[38] Piprek, J., White, J. K. & SpringThorpe, A. J. What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes? IEEE J. Quantum Electron. 38, 1253–1259 (2002). doi: 10.1109/JQE.2002.802441
[39] Mashanovich, G. Z. et al. Low loss silicon waveguides for the mid-infrared. Opt. Express 19, 7112–7119 (2011). doi: 10.1364/OE.19.007112
[40] Miller, S. A. et al. Low-loss silicon platform for broadband mid-infrared photonics. Optica 4, 707–712 (2017). doi: 10.1364/OPTICA.4.000707
[41] Gupta, S. et al. Highly selective dry etching of germanium over germanium–tin (Ge1–xSnx): a novel route for Ge1–xSnx nanostructure fabrication. Nano Lett. 13, 3783–3790 (2013). doi: 10.1021/nl4017286
[42] Lin, P. T. et al. Planar silicon nitride mid-infrared devices. Appl. Phys. Lett. 102, 251121 (2013). doi: 10.1063/1.4812332
[43] Prost, M. et al. Tensile-strained germanium microdisk electroluminescence. Opt. Express. 23, 6722–6730 (2015). doi: 10.1364/OE.23.006722
[44] Aubin, J. et al. Growth and structural properties of step-graded, high Sn content GeSn layers on Ge. Semicond. Sci. Technol. 32, 094006 (2017). doi: 10.1088/1361-6641/aa8084
[45] Bigourdan, F., Hugonin, J. -P. & Lalanne, P. Aperiodic-Fourier modal method for analysis of body-of-revolution photonic structures. J. Opt. Soc. Am. A 31, 1303–1311 (2014). doi: 10.1364/JOSAA.31.001303
[46] Rakić, A. D. et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998). doi: 10.1364/AO.37.005271