[1] Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quant. Electron. 30, 1951–1963 (1994). doi: 10.1109/3.301659
[2] Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008). doi: 10.1038/nature07430
[3] Patera, G., Shi, J., Horoshko, D. B. & Kolobov, M. I. Quantum temporal imaging: application of a time lens to quantum optics. J. Opt. 19, 054001 (2017). doi: 10.1088/2040-8986/aa608e
[4] Zhu, G. H., van Howe, J., Durst, M., Zipfel, W. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005). doi: 10.1364/OPEX.13.002153
[5] Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005). doi: 10.1364/OPEX.13.001468
[6] Papagiakoumou, E. et al. Functional patterned multiphoton excitation deep inside scattering tissue. Nat. Photonics 7, 274–278 (2013). doi: 10.1038/nphoton.2013.9
[7] Salem, R., Foster, M. A. & Gaeta, A. L. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photonics 5, 274–317 (2013). doi: 10.1364/AOP.5.000274
[8] Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102–112 (2013). doi: 10.1038/nphoton.2012.359
[9] Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010). doi: 10.1038/nmeth.1505
[10] Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics 5, 372–377 (2011). doi: 10.1038/nphoton.2011.72
[11] Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photonics 6, 293–339 (2014). doi: 10.1364/AOP.6.000293
[12] Jing, C. R., Wang, Z. H. & Cheng, Y. Characteristics and applications of spatiotemporally focused femtosecond laser pulses. Appl. Sci. 6, 428 (2016). doi: 10.3390/app6120428
[13] Stockbridge, C. et al. Focusing through dynamic scattering media. Opt. Express 20, 15086–15092 (2012). doi: 10.1364/OE.20.015086
[14] Kammel, R. et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci. Appl. 3, e169 (2014). doi: 10.1038/lsa.2014.50
[15] Mikami, H., Gao, L. & Goda, K. Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics 5, 98–110 (2016). doi: 10.1515/nanoph-2016-0026
[16] Schaffer, C. B., Nishimura, N., Glezer, E. N., Kim, A. M. T. & Mazur, E. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Opt. Express 10, 196–203 (2002). doi: 10.1364/OE.10.000196
[17] Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012). doi: 10.1038/ncomms1747
[18] Li, Z. Y., Zgadzaj, R., Wang, X. M., Chang, Y. Y. & Downer, M. C. Single-shot tomographic movies of evolving light-velocity objects. Nat. Commun. 5, 3085 (2014). doi: 10.1038/ncomms4085
[19] Goda, K., Tsia, K. & Jalali, B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458, 1145–1149 (2009). doi: 10.1038/nature07980
[20] Nakagawa, K. et al. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics 8, 695–700 (2014). doi: 10.1038/nphoton.2014.163
[21] Ehn, A. et al. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl. 6, e17045 (2017). doi: 10.1038/lsa.2017.45
[22] Kubota, T., Komai, K., Yamagiwa, M. & Awatsuji, Y. Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation. Opt. Express 15, 14348–14354 (2007). doi: 10.1364/OE.15.014348
[23] Gao, L., Liang, J. Y., Li, C. Y. & Wang, L. V. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516, 74–77 (2014). doi: 10.1038/nature14005
[24] Liang, J. Y. et al. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Sci. Adv. 3, e1601814 (2017). doi: 10.1126/sciadv.1601814
[25] Liang, J. Y., Gao, L., Hai, P. F., Li, C. Y. & Wang, L. V. Encrypted three-dimensional dynamic imaging using snapshot time-of-flight compressed ultrafast photography. Sci. Rep. 5, 15504 (2015). doi: 10.1038/srep15504
[26] Candès, E. J. The restricted isometry property and its implications for compressed sensing. C. R. Math. 346, 589–592 (2008). doi: 10.1016/j.crma.2008.03.014
[27] Bor, Z., Racz, B., Szabo, G., Hilbert, M. & Hazim, H. A. Femtosecond pulse front tilt caused by angular dispersion. Opt. Eng. 32, 2501–2504 (1993). doi: 10.1117/12.145393
[28] Hebling, J. Derivation of the pulse front tilt caused by angular dispersion. Opt. Quant. Electron. 28, 1759–1763 (1996). doi: 10.1007/BF00698541
[29] Mermillod-Blondin, A. et al. Time-resolved imaging of laser-induced refractive index changes in transparent media. Rev. Sci. Instrum. 82, 033703 (2011). doi: 10.1063/1.3527937
[30] Sun, Q. et al. Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. Opt. Lett. 30, 320–322 (2005). doi: 10.1364/OL.30.000320
[31] Lumpkin, A. H. & Early, J. W. First dual-sweep streak camera measurements of a photoelectric injector drive laser. Nucl. Instrum. Methods Phys. Res. A 318, 389–395 (1992). doi: 10.1016/0168-9002(92)91087-P
[32] Brady, D. J. et al. Multiscale gigapixel photography. Nature 486, 386–389 (2012). doi: 10.1038/nature11150
[33] Vitek, D. N. et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Opt. Express 18, 24673–24678 (2010). doi: 10.1364/OE.18.024673
[34] Wang, Z. H. et al. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass. Opt. Lett. 40, 5726–5729 (2015). doi: 10.1364/OL.40.005726
[35] Wang, X. F. et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique. Appl. Opt. 53, 8395–8399 (2014). doi: 10.1364/AO.53.008395
[36] Li, G. H. et al. Second harmonic generation in centrosymmetric gas with spatiotemporally focused intense femtosecond laser pulses. Opt. Lett. 39, 961–964 (2014). doi: 10.1364/OL.39.000961
[37] Foster, M. A. et al. Ultrafast waveform compression using a time-domain telescope. Nat. Photonics 3, 581–585 (2009). doi: 10.1038/nphoton.2009.169
[38] van Howe, J. & Xu, C. Ultrafast optical signal processing based upon space-time dualities. J. Light Technol. 24, 2649–2662 (2006). doi: 10.1109/JLT.2006.875229
[39] Weiner, A. M. in Ultrafast Optics (ed Boreman, G.) Ch. 3 (John Wiley & Sons, Inc., Hoboken, NJ, 2008).
[40] Durfee, C. G. & Squier, J. A. Breakthroughs in photonics 2014: spatiotemporal focusing: advances and applications. IEEE Photon J. 7, 0700806 (2015). doi: 10.1109/JPHOT.2015.2412454
[41] Poulin, P. R. & Nelson, K. A. Irreversible organic crystalline chemistry monitored in real time. Science 313, 1756–1760 (2006). doi: 10.1126/science.1127826
[42] Gross, M. et al. Heterodyne detection of multiply scattered monochromatic light with a multipixel detector. Opt. Lett. 30, 1357–1359 (2005). doi: 10.1364/OL.30.001357
[43] Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012). doi: 10.1038/nphoton.2012.88
[44] McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nat. Commun. 2, 447 (2011). doi: 10.1038/ncomms1434
[45] Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007). doi: 10.1038/nmeth1078
[46] Satat, G. et al. Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion. Nat. Commun. 6, 6796 (2015). doi: 10.1038/ncomms7796
[47] Horng, J. et al. Imaging electric field dynamics with graphene optoelectronics. Nat. Commun. 7, 13704 (2016). doi: 10.1038/ncomms13704
[48] Frühling, U. et al. Single-shot terahertz-field-driven X-ray streak camera. Nat. Photonics 3, 523–528 (2009). doi: 10.1038/nphoton.2009.160
[49] Hockett, P., Bisgaard, C. Z., Clarkin, O. J. & Stolow, A. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction. Nat. Phys. 7, 612–615 (2011). doi: 10.1038/nphys1980
[50] Gorkhover, T. et al. Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nat. Photonics 10, 93–97 (2016). doi: 10.1038/nphoton.2015.264