[1] Franken, P. A., Hill, A. E., Peters, C. C. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961). doi: 10.1103/PhysRevLett.7.118
[2] Birks, T. A., Wadsworth, W. J. & Russell, P. S. J. Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000). doi: 10.1364/OL.25.001415
[3] Stegeman, G. I., Hagan, D. J. & Torner, L. χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron. 28, 1691–1740 (1996). doi: 10.1007/BF00698538
[4] Koos, C. et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009). doi: 10.1038/nphoton.2009.25
[5] Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995). doi: 10.1103/PhysRevLett.75.4337
[6] Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006). doi: 10.1038/nature04446
[7] Giordmaine, J. A. & Miller, R. C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965). doi: 10.1103/PhysRevLett.14.973
[8] Yariv, A. & Louisell, W. H. Theory of the optical parametric oscillator. IEEE J. Quantum Electron. 2, 418–424 (1966). doi: 10.1109/JQE.1966.1074087
[9] Brosnan, S. J. & Byer, R. L. Optical parametric oscillator threshold and linewidth studies. IEEE J. Quantum Electron. 15, 415–431 (1979). doi: 10.1109/JQE.1979.1070027
[10] Eckardt, R. C., Nabors, C. D., Kozlovsky, W. J. & Byer, R. L. Optical parametric oscillator frequency tuning and control. J. Opt. Soc. Am. B 8, 646–667 (1991). doi: 10.1364/JOSAB.8.000646
[11] Debuisschert, T., Sizmann, A., Giacobino, E. & Fabre, C. Type-Ⅱ continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics. J. Opt. Soc. Am. B 10, 1668–1680 (1993). doi: 10.1364/JOSAB.10.001668
[12] Fabre, C., Cohadon, P. F. & Schwob, C. CW optical parametric oscillators: single mode operation and frequency tuning properties. Quantum Semiclass. Opt. 9, 165–172 (1997). doi: 10.1088/1355-5111/9/2/005
[13] Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4, 37–40 (2010). doi: 10.1038/nphoton.2009.259
[14] Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics 4, 41–45 (2010). doi: 10.1038/nphoton.2009.236
[15] Wu, L. A., Xiao, M. & Kimble, H. J. Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B 4, 1465–1475 (1987). doi: 10.1364/JOSAB.4.001465
[16] Lu, Y. J. & Ou, Z. Y. Optical parametric oscillator far below threshold: experiment versus theory. Phys. Rev. A 62, 033804 (2000). doi: 10.1103/PhysRevA.62.033804
[17] Ciuti, C., Schwendimann, P. & Quattropani, A. Theory of polariton parametric interactions in semiconductor microcavities. Semicond. Sci. Technol. 18, S279–S293 (2003). doi: 10.1088/0268-1242/18/10/301
[18] Diederichs, C. et al. Parametric oscillation in vertical triple microcavities. Nature 440, 904–907 (2006). doi: 10.1038/nature04602
[19] Abbarchi, M. et al. One-dimensional microcavity-based optical parametric oscillator: generation of balanced twin beams in strong and weak coupling regime. Phys. Rev. B 83, 201310 (2011). doi: 10.1103/PhysRevB.83.201310
[20] Giordmaine, J. A. Mixing of light beams in crystals. Phys. Rev. Lett. 8, 19–20 (1962). doi: 10.1103/PhysRevLett.8.19
[21] Vodopyanov, K. L. et al. Optical parametric oscillation in quasi-phase-matched GaAs. Opt. Lett. 29, 1912–1914 (2004). doi: 10.1364/OL.29.001912
[22] Canalias, C. & Pasiskevicius, V. Mirrorless optical parametric oscillator. Nat. Photonics 1, 459–462 (2007). doi: 10.1038/nphoton.2007.137
[23] Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000). doi: 10.1103/PhysRevLett.84.1547
[24] Ciuti, C., Schwendimann, P., Deveaud, B. & Quattropani, A. Theory of the angle-resonant polariton amplifier. Phys. Rev. B 62, R4825–R4828 (2000). doi: 10.1103/PhysRevB.62.R4825
[25] Xie, Z. D. et al. Cavity phase matching via an optical parametric oscillator consisting of a dielectric nonlinear crystal sheet. Phys. Rev. Lett. 106, 083901 (2011). doi: 10.1103/PhysRevLett.106.083901
[26] Clément, Q. et al. Ultrawidely tunable optical parametric oscillators based on relaxed phase matching: theoretical analysis. J. Opt. Soc. Am. B 32, 52–68 (2015). doi: 10.1364/JOSAB.32.000052
[27] Majumdar, A. et al. Hybrid 2D material nanophotonics: a scalable platform for low-power nonlinear and quantum optics. ACS Photonics 2, 1160–1166 (2015). doi: 10.1021/acsphotonics.5b00214
[28] Fryett, T. K. et al. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater. 4, 015031 (2017). doi: 10.1088/2053-1583/4/1/015031
[29] Yu, S. L., Wu, X. Q., Wang, Y. P., Guo, X. & Tong, L. M. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29, 1606128 (2017). doi: 10.1002/adma.201606128
[30] Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805
[31] Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). doi: 10.1021/nl903868w
[32] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). doi: 10.1038/nnano.2012.193
[33] Sun, Z. P., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15
[34] Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 87, 161403 (2013). doi: 10.1103/PhysRevB.87.161403
[35] Li, Y. L. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013). doi: 10.1021/nl401561r
[36] Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013). doi: 10.1103/PhysRevB.87.201401
[37] Janisch, C. et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep. 4, 5530 (2014). doi: 10.1038/srep05530
[38] Le, C. T. et al. Nonlinear optical characteristics of monolayer MoSe2. Ann. Phys. 528, 551–559 (2016). doi: 10.1002/andp.201600006
[39] Liu, B. G., Shan, Y. W., Yao, Y. G., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). doi: 10.1103/PhysRevB.88.085433
[40] Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014). doi: 10.1038/nmat4061
[41] Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 7, 13279 (2016). doi: 10.1038/ncomms13279
[42] Yariv, A. & Yeh, P. Optical Electronics in Modern Communications 6th edn, 359 (Oxford University Press, Oxford, 2007).