[1] Leach, R. K. Fundamental Principles of Engineering Nanometrology. (Oxford: Elsevier, 2014).
[2] Malshe, A. P. et al. Bio-inspired textures for functional applications. CIRP Annals 67, 627-650 (2018). doi: 10.1016/j.cirp.2018.05.001
[3] Karkantonis, T. et al. Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications. Surface and Coatings Technology 399, 126166 (2020). doi: 10.1016/j.surfcoat.2020.126166
[4] Gray, R. Covid-19: How long does the coronavirus last on surfaces? Preprint at https://www.wired.com/story/how-long-does-the-coronavirus-last-on-surfaces/ (2020).
[5] ISO 25178-600 2019. Geometrical Product Specifications (GPS) – Surface Texture: Areal – Part 600: Metrological Characteristics for Areal-topography Measuring Methods (Geneva: International Organization for Standardization).
[6] Leach, R. K. & Giusca, C. Calibration of optical surface topography measuring instruments. in Optical Measurement of Surface Topography (ed Leach, R. K.) (Berlin: Springer, 2011).
[7] Leach, R. K. et al. Calibration and verification of areal surface texture measuring instruments. CIRP Annals 64, 797-813 (2015). doi: 10.1016/j.cirp.2015.05.010
[8] Leach, R. K., Haitjema, H. & Giusca, C. A metrological characteristics approach to uncertainty in surface metrology. in Optical Inspection of Microsystems 2nd edn, (ed Osten, W.) (Boca Raton: CRC Press, 2019).
[9] Leach, R. K. et al. Metrological characteristics for the calibration of surface topography measuring instruments: a review. Measurement Science and Technology 32, 032001 (2021). doi: 10.1088/1361-6501/abb54f
[10] Balsamo, A. et al. Evaluation of CMM uncertainty through Monte Carlo simulations. CIRP Annals 48, 425-428 (1999). doi: 10.1016/S0007-8506(07)63218-1
[11] Peggs, G. Virtual technologies for advanced manufacturing and metrology. International Journal of Computer Integrated Manufacturing 16, 485-490 (2003). doi: 10.1080/0951192031000115804
[12] Küng, A. et al. Application of a virtual coordinate measuring machine for measurement uncertainty estimation of aspherical lens parameters. Measurement Science and Technology 25, 094011 (2014). doi: 10.1088/0957-0233/25/9/094011
[13] Gąska, A. et al. Virtual CMM-based model for uncertainty estimation of coordinate measurements performed in industrial conditions. Measurement 98, 361-371 (2017). doi: 10.1016/j.measurement.2016.12.027
[14] ISO/TS 15530-4 2008 Geometrical Product Specifications (GPS) – Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement – Part 4: Evaluating Task-Specific Measurement Uncertainty Using Simulation (Geneva: International Organization for Standardization).
[15] Haitjema, H. et al. Uncertainty estimation by the concept of virtual instruments. Proceedings of SPIE 4401, Recent Developments in Traceable Dimensional Measurements. Munich: SPIE, 2001.
[16] Giusca, C. L., Leach, R. K. & Forbes, A. B. A virtual machine-based uncertainty evaluation for a traceable areal surface texture measuring instrument. Measurement 44, 988-993 (2011). doi: 10.1016/j.measurement.2011.02.011
[17] Moroni, G., Syam, W. P. & Petrò, S. A simulation method to estimate task-specific uncertainty in 3D microscopy. Measurement 122, 402-416 (2018). doi: 10.1016/j.measurement.2018.01.026
[18] Coupland, J. M. & Nikolaev, N. I. A new approach to vector scattering: the 3s boundary source method. Optics Express 27, 30380-30395 (2019). doi: 10.1364/OE.27.030380
[19] Thomas, M. et al. Modelling of interference microscopy beyond the linear regime. Optical Engineering 59, 034110 (2020).
[20] Fay, M. & Dresel, T. Applications of model-based transparent surface films analysis using coherence-scanning interferometry. Optical Engineering 56, 111709 (2017). doi: 10.1117/1.OE.56.11.111709
[21] Bennett, J. M. Precise method for measuring the absolute phase change on reflection. Journal of the Optical Society of America 54, 612-624 (1964). doi: 10.1364/JOSA.54.000612
[22] De Groot, P. & Colonna de Lega, X. Angle-resolved three-dimensional analysis of surface films by coherence scanning interferometry. Optics Letters 32, 1638-1640 (2007). doi: 10.1364/OL.32.001638
[23] De Groot, P. et al. Metrology of optically-unresolved features using interferometric surface profiling and RCWA modeling. Optics Express 16, 3970-3975 (2008). doi: 10.1364/OE.16.003970
[24] Brophy, C. P. Effect of intensity error correlation on the computed phase of phase-shifting interferometry. Journal of the Optical Society of America A 7, 537-541 (1990).
[25] De Groot, P. & DiSciacca, J. Definition and evaluation of topography measurement noise in optical instruments. Optical Engineering 59, 064110 (2020).
[26] De Groot, P. Vibration in phase-shifting interferometry. Journal of the Optical Society of America A 12, 354-365 (1995). doi: 10.1364/JOSAA.12.000354
[27] Su, R. et al. Effects of defocus on the transfer function of coherence scanning interferometry. Optics Letters 43, 82-85 (2018). doi: 10.1364/OL.43.000082
[28] Xie, W. Transfer characteristics of white light interferometers and confocal microscopes. PhD thesis, University of Kassel, Kassel, 2017.
[29] Paz, V. F. et al. Solving the inverse grating problem by white light interference Fourier scatterometry. Light: Science & Applications 1, e36 (2012).
[30] De Groot, P. Coherence scanning interferometry. in Optical Measurement of Surface Topography (ed Leach, R. K.) (Berlin, Heidelberg: Springer-Verlag, 2011), 187-208.
[31] De Groot, P. Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics 7, 1-65 (2015). doi: 10.1364/AOP.7.000001
[32] Su, R. Coherence scanning interferometry. in Advances in Optical Surface Texture Metrology (ed Leach, R. K.) (IOP Publishing, 2020).
[33] Coupland, J. M. et al. Coherence scanning interferometry: linear theory of surface measurement. Applied Optics 52, 3662-3670 (2013). doi: 10.1364/AO.52.003662
[34] Su, R. et al. Scattering and three-dimensional imaging in surface topography measuring interference microscopy. Journal of the Optical Society of America A 38, A27-A42 (2021). doi: 10.1364/JOSAA.411929
[35] McCutchen, C. W. Generalized aperture and the three-dimensional diffraction image. Journal of the Optical Society of America 54, 240-244 (1964). doi: 10.1364/JOSA.54.000240
[36] Sheppard, C. J. R. & Larkin, K. G. Effect of numerical aperture on interference fringe spacing. Applied Optics 34, 4731-4734 (1995). doi: 10.1364/AO.34.004731
[37] Beckmann, P & Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces. (London: Pergamon Press, 1963).
[38] Mandal, R. et al. Coherence scanning interferometry: measurement and correction of three-dimensional transfer and point-spread characteristics. Applied Optics 53, 1554-1563 (2014). doi: 10.1364/AO.53.001554
[39] Su, R. et al. Lens aberration compensation in interference microscopy. Optics and Lasers in Engineering 128, 106015 (2020). doi: 10.1016/j.optlaseng.2020.106015
[40] De Groot, P. & Biegen, J. F. Interference microscope objectives for wide-field areal surface topography measurements. Optical Engineering 55, 074110 (2016). doi: 10.1117/1.OE.55.7.074110
[41] De Groot, P. et al. Determination of fringe order in white-light interference microscopy. Applied Optics 41, 4571-4578 (2002). doi: 10.1364/AO.41.004571
[42] Gomez, C. et al. Noise reduction in coherence scanning interferometry for surface topography measurement. Nanomanufacturing and Metrology 3, 68-76 (2020). doi: 10.1007/s41871-020-00057-4
[43] Larkin, K. G. Efficient nonlinear algorithm for envelope detection in white light interferometry. Journal of the Optical Society of America A 13, 832-843 (1996). doi: 10.1364/JOSAA.13.000832
[44] Henning, A. et al. Correction for lateral distortion in coherence scanning interferometry. CIRP Annals 62, 547-550 (2013). doi: 10.1016/j.cirp.2013.03.026
[45] Ekberg, P., Su, R. & Leach, R. K. High-precision lateral distortion measurement and correction in coherence scanning interferometry using an arbitrary surface. Optics Express 25, 18703-18712 (2017). doi: 10.1364/OE.25.018703
[46] Wyant, J. C. & Creath, K. Basic wavefront aberration theory for optical metrology. Applied Optics and Optical Engineering Xl, 1-53 (1992).
[47] Giusca, C. L. et al. Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness. Measurement Science and Technology 23, 035008 (2012). doi: 10.1088/0957-0233/23/3/035008
[48] ISO/DIS 25178-700 2020. Geometrical Product Specifications (GPS) – Surface Texture: Areal – Part 700: Calibration, Adjustment and Verification of Areal Topography Measuring Instruments (Geneva: International Organization for Standardization).
[49] Su, R. et al. On tilt and curvature dependent errors and the calibration of coherence scanning interferometry. Optics Express 25, 3297-3310 (2017). doi: 10.1364/OE.25.003297
[50] Gao, F. et al. Surface measurement errors using commercial scanning white light interferometers. Measurement Science and Technology 19, 015303 (2007).