[1] Lerosey, G. et al. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007). doi: 10.1126/science.1134824
[2] Wan, W. J. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011). doi: 10.1126/science.1200735
[3] Olivieri, L. et al. Time-resolved nonlinear ghost imaging. ACS Photonics 5, 3379–3388 (2018). doi: 10.1021/acsphotonics.8b00653
[4] Maire., G. et al. Experimental demonstration of quantitative imaging beyond Abbe's limit with optical diffraction tomography. Phys. Rev. Lett. 102, 213905 (2009). doi: 10.1103/PhysRevLett.102.213905
[5] Kim, K. et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J. Biomed. Opt. 19, 011005 (2014).
[6] Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). doi: 10.1103/PhysRevLett.85.3966
[7] Engheta, N. & Ziolkowski, R. W. A positive future for double-negative metamaterials. IEEE Trans. Microw. Theory Tech. 53, 1535–1556 (2005). doi: 10.1109/TMTT.2005.845188
[8] Yuan, G. H. et al. Far-field superoscillatory metamaterial superlens. Phys. Rev. Appl. 11, 064016 (2019). doi: 10.1103/PhysRevApplied.11.064016
[9] Lu, D. L. & Liu, Z. W. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 2176 (2012).
[10] Kaina, N. et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015). doi: 10.1038/nature14678
[11] High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015). doi: 10.1038/nature14477
[12] Pacheco-Peña, V. et al. Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies. Phys. Rev. Appl. 8, 034036 (2017). doi: 10.1103/PhysRevApplied.8.034036
[13] Li, M. Y. et al. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans. Antennas Propag. 64, 3820–3830 (2016). doi: 10.1109/TAP.2016.2583501
[14] Gao, X. et al. Massive MIMO performance evaluation based on measured propagation data. IEEE Trans. Wirel. Commun. 14, 3899–3911 (2015). doi: 10.1109/TWC.2015.2414413
[15] Ding, Z. G. et al. The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 15, 537–552 (2016). doi: 10.1109/TWC.2015.2475746
[16] Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937
[17] Shin, H. & Fan, S. H. All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys. Rev. Lett. 96, 073907 (2006). doi: 10.1103/PhysRevLett.96.073907
[18] Pendry, J. B., Martín-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999
[19] Ayata, M. et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017). doi: 10.1126/science.aan5953
[20] Gao, Z. et al. Spoof plasmonics: from metamaterial concept to topological description. Adv. Mater. 30, 1706683 (2018). doi: 10.1002/adma.201706683
[21] Zhang, J. J. et al. Spoof plasmon hybridization. Laser Photonics Rev. 11, 1600191 (2017). doi: 10.1002/lpor.201600191
[22] Shen, X. P. et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl Acad. Sci. USA 110, 40–45 (2013). doi: 10.1073/pnas.1210417110
[23] Gao, F. et al. Probing topological protection using a designer surface plasmon structure. Nat. Commun. 7, 11619 (2016). doi: 10.1038/ncomms11619
[24] Lin, X. et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).
[25] Gao, F. et al. Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances. Opt. Express 23, 6896–6902 (2015). doi: 10.1364/OE.23.006896
[26] Lin, X. et al. Unidirectional surface plasmons in nonreciprocal graphene. New J. Phys. 15, 113003 (2013). doi: 10.1088/1367-2630/15/11/113003
[27] Kianinejad, A., Chen, Z. N. & Qiu, C. W. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans. Microw. Theory Tech. 63, 1817–1825 (2015). doi: 10.1109/TMTT.2015.2422694
[28] Kianinejad, A., Chen, Z. N. & Qiu, C. W. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation. IEEE Trans. Microw. Theory Tech. 64, 3078–3086 (2016). doi: 10.1109/TMTT.2016.2604807
[29] Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010). doi: 10.1038/nmat2810
[30] Maier, S. A. et al. Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001). doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
[31] Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
[32] Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012). doi: 10.1126/science.1224823
[33] Lin, X. et al. Splashing transients of 2D plasmons launched by swift electrons. Sci. Adv. 3, e1601192 (2017). doi: 10.1126/sciadv.1601192
[34] Xu, S. et al. Broadband surface-wave transformation cloak. Proc. Natl Acad. Sci. USA 112, 7635–7638 (2015). doi: 10.1073/pnas.1508777112
[35] Yu, N. F. et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater. 9, 730–735 (2010). doi: 10.1038/nmat2822
[36] Pors, A. et al. Localized spoof plasmons arise while texturing closed surfaces. Phys. Rev. Lett. 108, 223905 (2012). doi: 10.1103/PhysRevLett.108.223905
[37] Fernandez-Dominguez, A. I. et al. Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J. Sel. Top. Quantum Electron. 14, 1515–1521 (2008). doi: 10.1109/JSTQE.2008.918107
[38] Huang, X. R., Peng, R. W. & Fan, R. H. Making metals transparent for white light by spoof surface plasmons. Phys. Rev. Lett. 105, 243901 (2010). doi: 10.1103/PhysRevLett.105.243901
[39] Martin-Cano, D. Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Opt. Lett. 36, 4635–4637 (2011). doi: 10.1364/OL.36.004635
[40] Kim, S. H. et al. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Phys. Rev. B 91, 035116 (2015). doi: 10.1103/PhysRevB.91.035116
[41] Khanikaev, A. B. et al. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett. 105, 126804 (2010). doi: 10.1103/PhysRevLett.105.126804
[42] Liu, X. Y. et al. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Opt. Express 22, 20107–20116 (2014). doi: 10.1364/OE.22.020107
[43] Liu, X. Y. et al. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. Opt. Express 21, 31155–31165 (2013). doi: 10.1364/OE.21.031155
[44] Liu, L. L. et al. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv. Sci. 5, 1800661 (2018). doi: 10.1002/advs.201800661
[45] Zhang, H. C. et al. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2, 1333–1340 (2015). doi: 10.1021/acsphotonics.5b00316
[46] Liang, Y. et al. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci. Rep. 5, 14853 (2015). doi: 10.1038/srep14853
[47] Gao, X. X. et al. Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip. IEEE Trans. Compon. Packaging Manuf. Technol. 9, 2267–2275 (2019). doi: 10.1109/TCPMT.2019.2931373