[1] |
Sheppard, C. J. R. Scanning confocal microscopy. in Encyclopedia of Optical Engineering (ed Driggers, R. G.) (New York: Marcel Dekker, 2003), 2525-2544. |
[2] |
Gaburro, N., Marchioro, G. & Daffara, C. A versatile optical profilometer based on conoscopic holography sensors for acquisition of specular and diffusive surfaces in artworks. Proceedings of SPIE 10331, Optics for Arts, Architecture, and Archaeology VI. Munich: SPIE, 2017, 103310A. |
[3] |
Wyant, J. C. Testing aspherics using two-wavelength holography. Applied Optics 10, 2113-2118 (1971). doi: 10.1364/AO.10.002113 |
[4] |
Fischer, E. W. et al. Dual-wavelength heterodyne interferometry for rough-surface measurements. Proceedings of SPIE 1319, Optics in Complex Systems. Garmisch: SPIE, 1990. |
[5] |
Claus, D., Iliescu, D. & Bryanston-Cross, P. Quantitative space-bandwidth product analysis in digital holography. Applied Optics 50, H116-H127 (2011). doi: 10.1364/AO.50.00H116 |
[6] |
Claus, D., Watson, J. & Rodenburg, J. Analysis and interpretation of the Seidel aberration coefficients in digital holography. Applied Optics 50, H220-H229 (2011). doi: 10.1364/AO.50.00H220 |
[7] |
Kelly, D. P. & Claus, D. Filtering role of the sensor pixel in Fourier and Fresnel digital holography. Applied Optics 52, A336-A345 (2013). doi: 10.1364/AO.52.00A336 |
[8] |
Creath, K. Phase-shifting holographic interferometry. in Holographic Interferometry (ed Rastogi, P. K.) (Berlin: Springer, 1994), 109-150. |
[9] |
Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America 72, 156-160 (1982). doi: 10.1364/JOSA.72.000156 |
[10] |
Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758 |
[11] |
Hildebrand, B. P. & Haines, K. A. Multiple-wavelength and multiple-source holography applied to contour generation. Journal of the Optical Society of America 57, 155-162 (1967). doi: 10.1364/JOSA.57.000155 |
[12] |
Friesem, A. A. & Levy, U. Fringe formation in two-wavelength contour holography. Applied Optics 15, 3009-3020 (1976). doi: 10.1364/AO.15.003009 |
[13] |
Shin, S. & Yu, Y. H. Three-dimensional information and refractive index measurement using a dual-wavelength digital holographic. Journal of the Optical Society of Korea 13, 173-177 (2009). doi: 10.3807/JOSK.2009.13.2.173 |
[14] |
Di, J. L. et al. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging of biological cells. Optical Engineering 56, 111712 (2017). doi: 10.1117/1.OE.56.11.111712 |
[15] |
Kühn, J. et al. Real-time dual-wavelength digital holographic microscopy for MEMS characterization. Proceedings of SPIE 6716, Optomechatronic Sensors and Instrumentation III. Lausanne: SPIE, 2007, 671608. |
[16] |
Gare, S. et al. Dual wavelength digital holography for 3D particle image velocimetry. Journal of the European Optical Society: Rapid Publications 10, 15009 (2015). doi: 10.2971/jeos.2015.15009 |
[17] |
Rajshekhar, G., Gorthi, S. S. & Rastogi, P. Simultaneous measurement of in-plane and out-of-plane displacement derivatives using dual-wavelength digital holographic interferometry. Applied Optics 50, H16-H21 (2011). doi: 10.1364/AO.50.000H16 |
[18] |
Osten, W. et al. Remote shape control by comparative digital holography. Proceedings of 4th International Workshop on Automatic Processing of Fringe Patterns. Berlin: Akademie Verlag, 2001, 373-382. |
[19] |
Osten, W., Baumbach, T. & Jüptner, W. Comparative digital holography. Optics Letters 27, 1764-1766 (2002). doi: 10.1364/OL.27.001764 |
[20] |
Kühn, J. et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Optics Express 15, 7231-7242 (2007). doi: 10.1364/OE.15.007231 |
[21] |
Schnars, U. & Jueptner, W. Numerical reconstruction. in Digital Holography (Berlin: Springer, 2005), 44-55. |
[22] |
Claus, D. et al. Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography. Journal of the Optical Society of America A 35, 546-552 (2018). doi: 10.1364/JOSAA.35.000546 |
[23] |
GmbH, V. Device for detecting a 3D structure of an object. (2013). |
[24] |
DeGroot, P. Interferometric laser profilometer. (1992). |
[25] |
Carl, D. et al. Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths. Applied Optics 48, H1-H8 (2009). doi: 10.1364/AO.48.0000H1 |
[26] |
Bodendorfer, T. et al. VCSEL in interferometry: a comparison to edge-emitting diode lasers regarding their applicability in speckle-interferometry. Journal of Optoelectronics and Advanced Materials:Rapid Communication 6, 36-39 (2012). |
[27] |
Pedrini, G. et al. Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the International Thermonuclear Experimental Reactor tokamak. Applied Optics 58, A147-A155 (2019). doi: 10.1364/AO.58.00A147 |
[28] |
Gross, H. et al. Wave aberrations. in Handbook of Optical Systems Volume 3 Aberration theory and corrections of optical systems (Wiley-VCH, 2007), 80. |
[29] |
Taylor, J. R. An Introduction to Error Analysis. (Colorado: University Science Books, 1996), 488. |
[30] |
Wagner, C., Osten, W. & Seebacher, S. Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring. Optical Engineering 39, 79-85 (2000). doi: 10.1117/1.602338 |
[31] |
Kühn, J. et al. Fast noncontact surface roughness measurements up to the micrometer range by dual-wavelength digital holographic microscopy. Proceedings of SPIE 7718, Optical Micro- and Nanometrology III. Brussels: SPIE, 2010, 771805. |
[32] |
Fujii, H. & Asakura, T. Roughness measurements of metal surfaces using laser speckle. Journal of the Optical Society of America 67, 1171-1176 (1977). doi: 10.1364/JOSA.67.001171 |
[33] |
Cheng, C. F. et al. Absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast. Applied Optics 41, 4148-4156 (2002). doi: 10.1364/AO.41.004148 |
[34] |
Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für mikroskopische Anatomie 9, 413-468 (1873). |
[35] |
Zeng, Y. N. et al. Characteristics analysis of digital image-plane holographic microscopy. Scanning 38, 288-296 (2016). doi: 10.1002/sca.21268 |
[36] |
Claus, D. & Nizami, M. R. Influence of aberrations and roughness on the chromatic confocal signal based on experiments and wave-optical modeling. Surface Topography:Metrology and Properties 8, 025031 (2020). doi: 10.1088/2051-672X/ab860b |
[37] |
Karray, M., Slangen, P. & Picart, P. Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture. Experimental Mechanics 52, 1275-1286 (2012). doi: 10.1007/s11340-012-9604-6 |
[38] |
Goodman, J. W. Wavelength and angle diversity. in Speckle phenomena in optics: theory and applications. (Greewood Village: Roberts and Company Publishers, 2007), 159. |