[1] Rothhardt, J. et al. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt. Express 20, 10870–10878 (2012). doi: 10.1364/OE.20.010870
[2] Dubietis, A., Butkus, R. & Piskarskas, A. P. Trends in chirped pulse optical parametric amplification. IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006). doi: 10.1109/JSTQE.2006.871962
[3] Elu, U. et al. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 4, 1024–1029 (2017). doi: 10.1364/OPTICA.4.001024
[4] Fattahi, H. et al. Third-generation femtosecond technology. Optica 1, 45–63 (2014). doi: 10.1364/OPTICA.1.000045
[5] Budriūnas, R. et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt. Express 25, 5797–5806 (2017). doi: 10.1364/OE.25.005797
[6] Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996). doi: 10.1063/1.116609
[7] Cardin, V. et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression. Appl. Phys. Lett. 107, 181101 (2015). doi: 10.1063/1.4934861
[8] Ouillé, M. et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light. : Sci. Appl. 9, 47 (2020). doi: 10.1038/s41377-020-0280-5
[9] Nagy, T. et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica 6, 1423–1424 (2019). doi: 10.1364/OPTICA.6.001423
[10] Jeong, Y. G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep. 8, 11794 (2018). doi: 10.1038/s41598-018-30198-y
[11] Lavenu, L. et al. High-power two-cycle ultrafast source based on hybrid nonlinear compression. Opt. Express 27, 1958–1967 (2019). doi: 10.1364/OE.27.001958
[12] Balciunas, T. et al. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 6, 6117 (2015). doi: 10.1038/ncomms7117
[13] Köttig, F. et al. Efficient single-cycle pulse compression of an ytterbium fiber laser at 10 MHz repetition rate. Opt. Express 28, 9099–9110 (2020). doi: 10.1364/OE.389137
[14] Lavenu, L. et al. Nonlinear pulse compression based on a gas-filled multipass cell. Opt. Lett. 43, 2252–2255 (2018). doi: 10.1364/OL.43.002252
[15] Balla, P. et al. Postcompression of picosecond pulses into the few-cycle regime. Opt. Lett. 45, 2572–2575 (2020). doi: 10.1364/OL.388665
[16] Kaumanns, M. et al. Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Opt. Lett. 43, 5877–5880 (2018).
[17] Weitenberg, J. et al. Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power. Opt. Express 25, 20502–20510 (2017). doi: 10.1364/OE.25.020502
[18] Ueffing, M. et al. Nonlinear pulse compression in a gas-filled multipass cell. Opt. Lett. 43, 2070–2073 (2018). doi: 10.1364/OL.43.002070
[19] Boyd, R. W. Nonlinear Optics. 3rd edn. (Academic Press, 2008).
[20] Beetar, J. E., Gholam-Mirzaei, S. & Chini, M. Spectral broadening and pulse compression of a 400 μJ, 20 W Yb: KGW laser using a multi-plate medium. Appl. Phys. Lett. 112, 051102 (2018). doi: 10.1063/1.5018758
[21] Cheng, Y. C. et al. Supercontinuum generation in a multi-plate medium. Opt. Express 24, 7224–7231 (2016). doi: 10.1364/OE.24.007224
[22] Ishii, N. et al. Optical parametric amplification of carrier-envelope phase-stabilized mid-infrared pulses generated by intra-pulse difference frequency generation. Opt. Express 27, 11447–11454 (2019). doi: 10.1364/OE.27.011447
[23] Lu, C. H. et al. Generation of intense supercontinuum in condensed media. Optica 1, 400–406 (2014). doi: 10.1364/OPTICA.1.000400
[24] Lu, C. H. et al. Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration. Opt. Express 27, 15638–15648 (2019). doi: 10.1364/OE.27.015638
[25] He, P. et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level. Opt. Lett. 42, 474–477 (2017).
[26] Bergé, L. et al. Self-guiding light in layered nonlinear media. Opt. Lett. 25, 1037–1039 (2000). doi: 10.1364/OL.25.001037
[27] Vlasov, S. N., Petrishchev, V. A. & Talanov, V. I. Theory of periodic selffocusing of light beams. Radiophys. Quantum Electron. 13, 716–719 (1970). doi: 10.1007/BF01030778
[28] Towers, I. & Malomed, B. A. Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity. J. Optical Soc. Am. B 19, 537–543 (2002). doi: 10.1364/JOSAB.19.000537
[29] Centurion, M. et al. Nonlinearity management in optics: experiment, theory, and simulation. Phys. Rev. Lett. 97, 033903 (2006). doi: 10.1103/PhysRevLett.97.033903
[30] Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008). doi: 10.1016/j.physrep.2008.04.004
[31] Giesen, A. et al. Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 58, 365–372 (1994). doi: 10.1007/BF01081875
[32] der Au, J. A. et al. 16.2-W average power from a diode-pumped femtosecond Yb: YAG thin disk laser. Opt. Lett. 25, 859–861 (2000). doi: 10.1364/OL.25.000859
[33] Röser, F. et al. 131 W 220 fs fiber laser system. Opt. Lett. 30, 2754–2756 (2005). doi: 10.1364/OL.30.002754
[34] Fox, A. G. & Li, T. Y. Effect of gain saturation on the oscillating modes of optical masers. IEEE J. Quantum Electron. 2, 774–783 (1966). doi: 10.1109/JQE.1966.1073769
[35] Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997). doi: 10.1063/1.1148286
[36] Planas, S. A. et al. Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett. 18, 699–701 (1993). doi: 10.1364/OL.18.000699
[37] Weiner, A. M., Heritage, J. P. & Stolen, R. H. Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers. J. Optical Soc. Am. B 5, 364–372 (1988). doi: 10.1364/JOSAB.5.000364
[38] Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 21, L31–L35 (1988). doi: 10.1088/0953-4075/21/3/001
[39] McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Optical Soc. Am. B 4, 595–601 (1987). doi: 10.1364/JOSAB.4.000595
[40] Rundquist, A. et al. Phase-matched generation of coherent soft x-rays. Science 280, 1412–1415 (1998). doi: 10.1126/science.280.5368.1412
[41] Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000). doi: 10.1103/RevModPhys.72.545
[42] Jin, C. et al. Generation of isolated attosecond pulses in the far field by spatial filtering with an intense few-cycle mid-infrared laser. Phys. Rev. A 84, 043411 (2011). doi: 10.1103/PhysRevA.84.043411
[43] Christov, I. P. et al. Nonadiabatic effects in high-harmonic generation with ultrashort pulses. Phys. Rev. Lett. 77, 1743–1746 (1996). doi: 10.1103/PhysRevLett.77.1743
[44] Krause, J. L. et al. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992). doi: 10.1103/PhysRevLett.68.3535
[45] Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993). doi: 10.1103/PhysRevLett.71.1994
[46] Lewenstein, M. et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994). doi: 10.1103/PhysRevA.49.2117
[47] Seidel, M. et al. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses. Opt. Express 24, 9412–9428 (2016). doi: 10.1364/OE.24.009412
[48] Demmler, S. et al. Generation of high photon flux coherent soft x-ray radiation with few-cycle pulses. Opt. Lett. 38, 5051–5054 (2013). doi: 10.1364/OL.38.005051
[49] Infeld, E. & Rowlands, G. Nonlinear Waves, Solitons, and Chaos. (Cambridge University Press, 1990).
[50] Prade, B. et al. Spatial mode cleaning by femtosecond filamentation in air. Opt. Lett. 31, 2601–2603 (2006). doi: 10.1364/OL.31.002601
[51] Moll, K. D., Gaeta, A. L. & Fibich, G. Self-similar optical wave collapse: observation of the townes profile. Phys. Rev. Lett. 90, 203902 (2003). doi: 10.1103/PhysRevLett.90.203902
[52] Krupa, K. et al. Spatial beam self-cleaning in multimode fibres. Nat. Photonics 11, 237–241 (2017). doi: 10.1038/nphoton.2017.32
[53] Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics 9, 306–310 (2015). doi: 10.1038/nphoton.2015.61
[54] Böhle, F. et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 11, 095401 (2014). doi: 10.1088/1612-2011/11/9/095401
[55] Nisoli, M. et al. Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522–524 (1997). doi: 10.1364/OL.22.000522
[56] Fritsch, K. et al. All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett. 43, 4643–4646 (2018). doi: 10.1364/OL.43.004643
[57] Vicentini, E. et al. Nonlinear pulse compression to 22 fs at 15.6 µJ by an all-solid-state multipass approach. Opt. Express 28, 4541–4549 (2020). doi: 10.1364/OE.385583
[58] Christov, I. P. et al. Mode locking with a compensated space–time astigmatism. Opt. Lett. 20, 2111–2113 (1995). doi: 10.1364/OL.20.002111
[59] Eisenberg, H. S. et al. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998). doi: 10.1103/PhysRevLett.81.3383
[60] Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988). doi: 10.1364/OL.13.000794
[61] Fleischer, J. W. et al. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003). doi: 10.1103/PhysRevLett.90.023902
[62] Neshev, D. et al. Spatial solitons in optically induced gratings. Opt. Lett. 28, 710–712 (2003). doi: 10.1364/OL.28.000710
[63] Skryabin, D. V. et al. Soliton self-frequency shift cancellation in photonic crystal fibers. Science 301, 1705–1708 (2003). doi: 10.1126/science.1088516
[64] Sivan, Y., Fibich, G. & Weinstein, M. I. Waves in nonlinear lattices: ultrashort optical pulses and Bose-Einstein condensates. Phys. Rev. Lett. 97, 193902 (2006). doi: 10.1103/PhysRevLett.97.193902
[65] Saito, H. & Ueda, M. Dynamically stabilized bright solitons in a two-dimensional bose-einstein condensate. Phys. Rev. Lett. 90, 040403 (2003). doi: 10.1103/PhysRevLett.90.040403
[66] Davydov, A. S. Solitons and energy transfer along protein molecules. J. Theor. Biol. 66, 379–387 (1977). doi: 10.1016/0022-5193(77)90178-3
[67] Bergé, L. et al. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007). doi: 10.1088/0034-4885/70/10/R03
[68] Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932). doi: 10.1103/PhysRev.40.749
[69] Salières, P., L'Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995). doi: 10.1103/PhysRevLett.74.3776
[70] Jin, C., Le, A. T. & Lin, C. D. Medium propagation effects in high-order harmonic generation of Ar and N2. Phys. Rev. A 83, 023411 (2011). doi: 10.1103/PhysRevA.83.023411
[71] Lin, C. D. et al. Elements of the quantitative rescattering theory. J. Phys. B: At., Mol. Optical Phys. 51, 104001 (2018). doi: 10.1088/1361-6455/aabaa2
[72] Le, A. T. et al. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009). doi: 10.1103/PhysRevA.80.013401