[1] Hu JJ, Li L, Lin HT, Zhang P, Zhou WD et al. Flexible integrated photonics: where materials, mechanics and optics meet [Invited]. Opt Mater Express 2013; 3: 1313–1331. doi: 10.1364/OME.3.001313
[2] Li L, Lin HT, Michon J, Huang YZ, Li JY et al. A new twist on glass: a brittle material enabling flexible integrated photonics. Int J Appl Glass Sci 2017; 8: 61–68. doi: 10.1111/ijag.12256
[3] Dangel R, Horst F, Jubin D, Meier N, Weiss J et al. Development of versatile polymer waveguide flex technology for use in optical interconnects. J Lightwave Technol 2013; 31: 3915–3926. doi: 10.1109/JLT.2013.2282499
[4] Swatowski BW, Amb CM, Breed SK, Deshazer DJ, Weidner WK et al. Flexible, stable, and easily processable optical silicones for low loss polymer waveguides. Proc SPIE 2013; 8622: 862205. doi: 10.1117/12.2007419
[5] Li L, Zou Y, Lin HT, Hu JJ, Sun XC et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. J Lightwave Technol 2013; 31: 4080–4086. doi: 10.1109/JLT.2013.2285382
[6] Choi C, Lin L, Liu YJ, Choi J, Wang L et al. Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects. J Lightwave Technol 2004; 22: 2168–2176. doi: 10.1109/JLT.2004.833815
[7] Shibata T, Takahashi A. Flexible opto-electronic circuit board for in-device interconnection. 58th Electronic Components and Technology Conference, 27-30 May 2008; Lake Buena Vista, FL, USA. IEEE: New York, NY, USA, 2008, pp261–pp267.
[8] Bosman E, van Steenberge G, van Hoe B, Missinne J, Vanfleteren J et al. Highly reliable flexible active optical links. IEEE Photonics Technol Lett 2010; 22: 287–289. doi: 10.1109/LPT.2009.2038797
[9] Chen Y, Li H, Li M. Flexible and tunable silicon photonic circuits on plastic substrates. Sci Rep 2012; 2: 622. doi: 10.1038/srep00622
[10] Zhu L, Kapraun J, Ferrara J, Chang-Hasnain CJ. Flexible photonic metastructures for tunable coloration. Optica 2015; 2: 255–258. doi: 10.1364/OPTICA.2.000255
[11] Zou Y, Moreel L, Lin HT, Zhou J, Li L et al. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration. Adv Opt Mater 2014; 2: 759–764. doi: 10.1002/adom.201400068
[12] Gao L, Zhang YH, Malyarchuk V, Jia L, Jang KI et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun 2014; 5: 4938. doi: 10.1038/ncomms5938
[13] Fan L, Varghese LT, Xuan Y, Wang J, Niu B et al. Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing. Opt Express 2012; 20: 20564–20575. doi: 10.1364/OE.20.020564
[14] Kamali SM, Arbabi A, Arbabi E, Horie Y, Faraon A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat Commun 2016; 7: 11618. doi: 10.1038/ncomms11618
[15] Zhou WD, Ma ZQ. Breakthroughs in photonics 2012: breakthroughs in nanomembranes and nanomembrane lasers. IEEE Photonics J 2013; 5: 0700707. doi: 10.1109/JPHOT.2013.2250942
[16] Li L, Lin HT, Qiao ST, Zou Y, Danto S et al. Integrated flexible chalcogenide glass photonic devices. Nat Photonics 2014; 8: 643–649. doi: 10.1038/nphoton.2014.138
[17] Zou Y, Zhang DN, Lin HT, Liu L, Moreel L et al. High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates. Adv Opt Mater 2014; 2: 478–486. doi: 10.1002/adom.201300489
[18] Li L, Zhang P, Wang WM, Lin HT, Zerdoum AB et al. Foldable and cytocompatible sol-gel TiO2 photonics. Sci Rep 2015; 5: 13832. doi: 10.1038/srep13832
[19] Arumugam V, Naresh MD, Sanjeevi R. Effect of strain rate on the fracture behaviour of skin. J Biosci 1994; 19: 307–313. doi: 10.1007/BF02716820
[20] Missinne J, Kalathimekkad S, van Hoe B, Bosman E, Vanfleteren J et al. Stretchable optical waveguides. Opt Express 2014; 22: 4168–4179. doi: 10.1364/OE.22.004168
[21] Zhao HC, O'Brien K, Li S, Shepherd RF. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Rob 2016; 1: eaai7529. doi: 10.1126/scirobotics.aai7529
[22] Yu CL, Kim H, de Leon N, Frank IW, Robinson JT et al. Stretchable photonic crystal cavity with wide frequency tunability. Nano Lett 2013; 13: 248–252. doi: 10.1021/nl303987y
[23] Gutruf P, Zou CJ, Withayachumnankul W, Bhaskaran M, Sriram S et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 2016; 10: 133–141. doi: 10.1021/acsnano.5b05954
[24] Ee HS, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 2016; 16: 2818–2823. doi: 10.1021/acs.nanolett.6b00618
[25] Chen WQ, Lam RH, Fu JP. Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab Chip 2012; 12: 391–395. doi: 10.1039/C1LC20721K
[26] Chou N, Kim Y, Kim S. A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications. ACS Appl Mater Interfaces 2016; 8: 6269–6276. doi: 10.1021/acsami.5b11307
[27] Tinku S, Collini C, Lorenzelli L, Dahiya RS. Smart contact lens using passive structures. 2014 IEEE SENSORS, 2-5 November 2014; Valencia, Spain Valencia, Spain. IEEE: New York, NY, USA, 2014, pp2107–pp2110.
[28] Jung SW, Koo JB, Park CW, Na BS, Oh JY et al. Flexible organic thin-film transistors fabricated on polydimethylsiloxane elastomer substrates. J Nanosci Nanotechnol 2015; 15: 7513–7517. doi: 10.1166/jnn.2015.11137
[29] Romeo A, Liu QH, Suo ZG, Lacour SP. Elastomeric substrates with embedded stiff platforms for stretchable electronics. Appl Phys Lett 2013; 102: 131904. doi: 10.1063/1.4799653
[30] Gray DS, Tien J, Chen CS. High-conductivity elastomeric electronics. Adv Mater 2004; 16: 393–397. doi: 10.1002/adma.200306107
[31] Kim DH, Lu NS, Ghaffari R, Kim YS, Lee SP et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 2011; 10: 316–323. doi: 10.1038/nmat2971
[32] Verplancke R, Bossuyt F, Cuypers D, Vanfleteren J. Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance. J Micromech Microeng 2011; 22: 015002. doi: 10.1088/0960-1317/22/1/015002
[33] Kim DH, Ghaffari R, Lu NS, Rogers JA. Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng 2012; 14: 113–128. doi: 10.1146/annurev-bioeng-071811-150018
[34] Huang M. Stress effects on the performance of optical waveguides. Int J Solids Struct 2003; 40: 1615–1632. doi: 10.1016/S0020-7683(03)00037-4
[35] Ye WN, Xu DX, Janz S, Cheben P, Picard MJ et al. Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides. J Lightwave Technol 2005; 23: 1308–1318. doi: 10.1109/JLT.2005.843518
[36] Hu JJ, Tarasov V, Agarwal A, Kimerling L, Carlie N et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt Express 2007; 15: 2307–2314. doi: 10.1364/OE.15.002307
[37] Musgraves J, Carlie N, Hu J, Petit L, Agarwal A et al. Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques. Acta Mater 2011; 59: 5032–5039. doi: 10.1016/j.actamat.2011.04.060
[38] Du QY, Huang YZ, Li JY, Kita D, Michon J et al. Low-loss photonic device in Ge-Sb-S chalcogenide glass. Opt Lett 2016; 41: 3090–3093. doi: 10.1364/OL.41.003090
[39] Carlie NA. A Solution-based Approach to the Fabrication of Novel Chalcogenide Glass Materials and Structures. PhD dissertation, Clemson University, Clemson, USA, 2010.
[40] Gonzalez M, Axisa F, Bulcke MV, Brosteaux D, Vandevelde B et al. Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab 2008; 48: 825–832. doi: 10.1016/j.microrel.2008.03.025
[41] Klein S, Barsella A, Leblond H, Bulou H, Fort A et al. One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Appl Phys Lett 2005; 86: 211118. doi: 10.1063/1.1915525
[42] Cherchi M, Ylinen S, Harjanne M, Kapulainen M, Aalto T. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Opt Express 2013; 21: 17814–17823. doi: 10.1364/OE.21.017814
[43] Rabiei P, Steier WH, Zhang C, Dalton LR. Polymer micro-ring filters and modulators. J Lightwave Technol 2002; 20: 1968–1975. doi: 10.1109/JLT.2002.803058
[44] Girault P, Lorrain N, Poffo L, Guendouz M, Lemaitre J et al. Integrated polymer micro-ring resonators for optical sensing applications. J Appl Phys 2015; 117: 104504. doi: 10.1063/1.4914308
[45] Poon JKS, Huang YY, Paloczi GT, Yariv A. Soft lithography replica molding of critically coupled polymer microring resonators. IEEE Photonics Technol Lett 2004; 16: 2496–2498. doi: 10.1109/LPT.2004.835610
[46] Jin L, Fu X, Yang B, Shi YC, Dai DX. Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides. Opt Lett 2013; 38: 2134–2136. doi: 10.1364/OL.38.002134
[47] De Brabander GN, Boyd JT, Beheim G. Integrated optical ring resonator with micromechanical diaphragms for pressure sensing. IEEE Photonics Technol Lett 1994; 6: 671–673. doi: 10.1109/68.285575
[48] Westerveld WJ, Leinders SM, Muilwijk PM, Pozo J, van den Dool TC et al. Characterization of integrated optical strain sensors based on silicon waveguides. IEEE J Sel Top Quant Electron 2014; 20: 5900110.
[49] Bhola B, Song HC, Tazawa H, Steier WH. Polymer microresonator strain sensors. IEEE Photonics Technol Lett 2005; 17: 867–869. doi: 10.1109/LPT.2005.843952
[50] Tsukiji M, Kowa H, Muraki K, Umeda N, Imoto K et al. Measurement system for very small photoelastic constant of polymer films. Macromol Symp 2006; 242: 235–240. doi: 10.1002/masy.200651032
[51] Hossain MF, Chan HP, Uddin MA. Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique. Appl Opt 2010; 49: 403–408. doi: 10.1364/AO.49.000403