[1] Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett 1970; 24: 592–594. doi: 10.1103/PhysRevLett.24.592
[2] Ranka JK, Windeler RS, Stenza AJ. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 2000; 25: 25–27. doi: 10.1364/OL.25.000025
[3] Udem T, Holzwarth R, Hänsch TW. Optical frequency metrology. Nature 2002; 416: 233–237. doi: 10.1038/416233a
[4] Kano H, Hamaguchi H. Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy. Opt Lett 2003; 28: 2360–2362. doi: 10.1364/OL.28.002360
[5] Hartl L, Li XD, Chudoba C, Ghanta RK, Ko TH et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett 2001; 26: 608–610. doi: 10.1364/OL.26.000608
[6] Morioka T, Okamoto K, Ishii M, Saruwatari M. Low-noise, pulsewidth tunable picosecond to femtosecond pulse generation by spectral filtering of wideband supercontinuum with variable bandwidth arrayed-waveguide grating filters. Electron Lett 1996; 32: 836–837. doi: 10.1049/el:19960561
[7] Morioka T, Mori K, Saruwatari M. More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres. Electron Lett 1993; 29: 862–864. doi: 10.1049/el:19930576
[8] Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol 2006; 24: 4600–4615.
[9] Soref R. The past, present, and future of silicon photonics. IEEE J Sel Topics Quantum Electron 2006; 12: 1678–1687. doi: 10.1109/JSTQE.2006.883151
[10] Zhang L, Agarwal AM, Kimerling LC, Michel J. Nonlinear group Ⅳ photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics 2014; 3: 247–268. doi: 10.1515/nanoph-2013-0020
[11] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photonics 2010; 4: 535–544. doi: 10.1038/nphoton.2010.185
[12] Yin LH, Agrawal GP. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt Lett 2007; 32: 2031–2033. doi: 10.1364/OL.32.002031
[13] Yin LH, Qiang L, Agrawal GP. Soliton fission and supercontinuum generation in silicon waveguides. Opt Lett 2007; 32: 391–393. doi: 10.1364/OL.32.000391
[14] Leo F, Gorza SP, Safioui J, Kockaert P, Coen S et al. Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength. Opt Lett 2014; 39: 3623–3626. doi: 10.1364/OL.39.003623
[15] Halir R, Okawachi Y, Levy JS, Foster MA, Lipson M et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt Lett 2012; 37: 1685–1687. doi: 10.1364/OL.37.001685
[16] Moss DJ, Morandotti R, Gaeta AL, Lipson M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics 2013; 7: 597–607. doi: 10.1038/nphoton.2013.183
[17] Yu Y, Gai X, Ma P, Choi DY, Yang ZY et al. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photonics Rev 2014; 8: 792–798. doi: 10.1002/lpor.201400034
[18] Ettabib MA, Xu L, Bogris A, Kapsalis A, Belal M et al. Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. Opt Lett 2015; 40: 4118–4121. doi: 10.1364/OL.40.004118
[19] Dave UD, Ciret C, Gorza SP, Combrie S, De Rossi A et al. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt Lett 2015; 40: 3584–3587. doi: 10.1364/OL.40.003584
[20] Hickstein DD, Jung H, Carlson DR, Lind A, Coddington I et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys Rev Appl 2017; 8: 014025. doi: 10.1103/PhysRevApplied.8.014025
[21] Safioui J, Leo F, Kuyken B, Gorza SP, Selvaraja SK et al. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Opt Express 2014; 22: 3089–3097. doi: 10.1364/OE.22.003089
[22] Shen L, Healy N, Xu L, Cheng HY, Day TD et al. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Opt Lett 2014; 39: 5721–5724. doi: 10.1364/OL.39.005721
[23] Kuyken B, Ideguchi T, Holzner S, Yan M, Hänsch TW et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat Commun 2015; 6: 6310. doi: 10.1038/ncomms7310
[24] Kuyken B, Liu XP, Osgood RM, Baets R, Roelkens G et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt Express 2011; 19: 20172–20181. doi: 10.1364/OE.19.020172
[25] Lau RKW, Lamont MRE, Griffith AG, Okawachi Y, Lipson M et al. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt Lett 2014; 39: 4518–4521. doi: 10.1364/OL.39.004518
[26] Singh N, Hudson DD, Yu Y, Grillet C, Jackson SD et al. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica 2015; 2: 797–802. doi: 10.1364/OPTICA.2.000797
[27] Nader N, Maser DL, Cruz FC, Fredrick C, Ycas G et al. Coherent On-Chip Spectral-Engineered Mid-IR Frequency Comb Generation in Si Waveguides. Proceedings of 2017 Conference on Lasers and Electro-Optics; 14–19 May 2017; San Jose, CA, USA. Optical Society of America: San Jose, CA, USA, 2017.
[28] Baehr-Jones T, Spott A, Ilic R, Spott A, Penkov B et al. Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt Express 2010; 18: 12127–12135. doi: 10.1364/OE.18.012127
[29] Singh N, Casas-Bedoya A, Hudson DD, Read A, Mägi E et al. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide. Opt Lett 2016; 41: 5776–5779. doi: 10.1364/OL.41.005776
[30] Singh N, Hudson DD, Eggleton BJ. Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. Opt Express 2015; 23: 17345–17354. doi: 10.1364/OE.23.017345
[31] Chiles J, Fathpour S. Single-mode and single-polarization photonics with anchored-membrane waveguides. Opt Express 2016; 24: 19337–19343. doi: 10.1364/OE.24.019337
[32] Zhang L, Lin Q, Yue Y, Yan Y, Beausoleil RG et al. Silicon waveguide with four zero dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt Express 2012; 20: 1685–1690. doi: 10.1364/OE.20.001685
[33] Leo F, Gorza SP, Coen S, Kuyken B, Roelkens G. Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range. Opt Lett 2015; 40: 123–126. doi: 10.1364/OL.40.000123
[34] Timurdogan E, Poulton CV, Byrd MJ, Watts MR. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat Photonics 2017; 11: 200–206. doi: 10.1038/nphoton.2017.14
[35] Callahan PT, Shtyrkova K, Li NX, Magden ES, Purnawirman P et al. Fully-Integrated CMOS-Compatible Q-Switched Laser at 1.9 μm Using Thulium-Doped Al2O3. Proceedings of 2017 Conference on Lasers and Electro-Optics; 14–19 May 2017; San Jose, CA, USA. Optical Society of America: San Jose, CA, USA, 2017.
[36] Bristow AD, Rotenberg N, van Driel HM. Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm. Appl Phys Lett 2007; 90: 191104. doi: 10.1063/1.2737359
[37] Poletti F, Horak P. Dynamics of femtosecond supercontinuum generation in multimode fibers. Opt Express 2009; 17: 6134–6147. doi: 10.1364/OE.17.006134
[38] Almeida VR, Panepucci RR, Lipson M. Nanotaper for compact mode conversion. Opt Lett 2003; 28: 1302–1304. doi: 10.1364/OL.28.001302
[39] Corcoran B, Monat C, Grillet C, Moss DJ, Eggleton BJ et al. Green light emission in silicon through slow-light enhanced third-harmonics generation in photonics-crystal waveguides. Nat Photonics 2009; 3: 206–210. doi: 10.1038/nphoton.2009.28
[40] Dudley JM, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt Lett 2002; 27: 1180–1182. doi: 10.1364/OL.27.001180
[41] Agrawal G Nonlinear Fiber Optics, 5th edn. Amsterdam: Elsevier; 2012.
[42] Bertolotti M, Ferrari A, Sereda L. Coherence properties of nonstationary polychromatic light sources. J Opt Soc Am B 1995; 12: 341–347. doi: 10.1364/JOSAB.12.000341
[43] Bellini M, Hänsch TW. Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. Opt Lett 2000; 25: 1049–1051. doi: 10.1364/OL.25.001049
[44] Gu X, Kimmel M, Shreenath AP, Trebino R, Dudley JM et al. Experimental studies of the coherence of microstructure-fiber supercontinuum. Opt Express 2003; 11: 2697–2703. doi: 10.1364/OE.11.002697
[45] Lu F, Knox WH. Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers. Opt Express 2004; 12: 347–353. doi: 10.1364/OPEX.12.000347
[46] Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys Rev Lett 2001; 88: 173901. doi: 10.1103/PhysRevLett.88.173901
[47] Akhmediev N, Karlsson M. Cherenkov radiation emitted by solitons in optical fibers. Phys Rev A 1995; 41: 2602–2607. doi: 10.1103/PhysRevA.51.2602
[48] Roy S, Bhadra SK, Agrawal GP. Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers. Phys Rev A 2009; 79: 023824. doi: 10.1103/PhysRevA.79.023824
[49] Roy S, Bhadra SK, Agrawal GP. Effects of higher-order dispersion on resonant dispersive waves emitted by solitons. Opt Lett 2009; 34: 2072–2074. doi: 10.1364/OL.34.002072
[50] Paschotta R. Noise of mode-locked lasers (part1): numerical model. Appl Phys B 2004; 79: 153–162. doi: 10.1007/s00340-004-1547-x
[51] Genty G, Lehtonen M, Ludvigsen H, Kaivola M. Enhanced bandwidth of supercontinuum generated in microstructured fibers. Opt Express 2004; 12: 3471–3480. doi: 10.1364/OPEX.12.003471
[52] Frosz MH, Falk P, Bang O. The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. Opt Express 2005; 13: 6181–6192. doi: 10.1364/OPEX.13.006181
[53] Hilligsøe KM, Andersen TV, Paulsen HN, Nielsen CK, Mølmer K et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Opt Express 2004; 12: 1045–1054. doi: 10.1364/OPEX.12.001045
[54] Kerrinckx E, Bigot L, Douay M, Quiquempois Y. Photonic crystal fiber design by means of a genetic algorithm. Opt Express 2004; 12: 1990–1995. doi: 10.1364/OPEX.12.001990
[55] Li NX, Purnawirman P, Su Z, Magden ES, Callahan PT et al. High-power thulium lasers on a silicon photonics platform. Opt Lett 2017; 42: 1181–1184. doi: 10.1364/OL.42.001181
[56] Spencer DT, Bluestone A, Bowers JE, Briles TC, Diddams SA et al. Towards an Integrated-Photonics Optical-Frequency Synthesizer with & lt; 1 Hz Residual Frequency Noise. Proceedings of 2017 Optical Fiber Communication Conference and Exposition; 19 March 2017; Los Angeles, CA, USA. OFC: Los Angeles, CA, USA, 2017.
[57] Singh G, Purnawirman, Bradley JDB, Li N, Magden ES et al. Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities. Opt Lett 2016; 41: 1189–1192. doi: 10.1364/OL.41.001189
[58] Michel J, Liu JF, Kimerling LC. High-performance Ge-on-Si photodetectors. Nat Photonics 2010; 4: 527–534. doi: 10.1038/nphoton.2010.157
[59] Foster MA, Moll KD, Gaeta AL. Optimal waveguide dimensions for nonlinear interactions. Opt Express 2004; 12: 2880–2887. doi: 10.1364/OPEX.12.002880
[60] Klenner A, Mayer AS, Johnson AR, Luke K, Lamont MRE et al. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt Express 2016; 24: 11043–11053. doi: 10.1364/OE.24.011043
[61] Mori K, Takara H, Kawanishi S. Analysis and design of supercontinuum pulse generation in a single-mode optical fiber. J Opt Soc Am B 2001; 18: 1780–1792. doi: 10.1364/JOSAB.18.001780
[62] Genty G, Coen S, Lacourt PA, Dudley JM Highly Coherent Supercontinuum Generation in Dispersion Increasing Fibers. Proceedings of 2017 Nonlinear Photonics; 2 September 2007; Quebec City, Canada. Optical Society of America: Quebec City, Canada, 2007.
[63] Zhang HN, Li P. Ultra-flat supercontinuum generation in cascaded photonic crystal fiber with picosecond fiber laser pumping. Opt Commun 2016; 372: 60–63. doi: 10.1016/j.optcom.2016.04.005
[64] Ciret C, Gorza SP. Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguides. J Opt Soc Am B 2017; 34: 1156–1162. doi: 10.1364/JOSAB.34.001156
[65] Westbrook PS, Nicholson JW, Feder KS, Li Y, Brown T. Supercontinuum generation in a fiber grating. Appl Phys Lett 2004; 85: 4600–4602. doi: 10.1063/1.1818740
[66] Wang T, Venkatram N, Gosciniak J, Cui Y, Qian G et al. Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. Opt Express 2013; 21: 32192–32198. doi: 10.1364/OE.21.032192