[1] Bovatsek, J. M. & Patel, R. S. Highest-speed dicing of thin silicon wafers with nanosecond-pulse 355nm q-switched laser source using line-focus fluence optimization technique. Proceedings of SPIE 7585, Laser-based Micro- and Nanopackaging and Assembly IV. San Francisco: SPIE, 2010, 75850K.
[2] Rung, S. et al. Laserscribing of thin films using top-hat laser beam profiles. JLMN-Journal of Laser Micro/Nanoengineering 8, 309-314 (2013). doi: 10.2961/jlmn.2013.03.0021
[3] Račiukaitis, G. et al. Laser processing by using diffractive optical laser beam shaping technique. JLMN-Journal of Laser Micro/Nanoengineering 6, 37-43 (2013).
[4] Wa ng, Y. Z. & Lin, J. Characterization of the laser cleaving on glass sheets with a line-shape laser beam. Optics & Laser Technology 39, 892-899 (2007).
[5] Döring, S. et al. In situ imaging of hole shape evolution in ultrashort pulse laser drilling. Optics Express 18, 20395-20400 (2010). doi: 10.1364/OE.18.020395
[6] Dietrich, J. et al. Investigation of increased drilling speed by online high-speed photography. Optics and Lasers in Engineering 46, 705-710 (2008). doi: 10.1016/j.optlaseng.2008.05.010
[7] Leith, E. N. & Swanson, G. J. Achromatic interferometers for white light optical processing and holography. Applied Optics 19, 638-644 (1980). doi: 10.1364/AO.19.000638
[8] Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991). doi: 10.1126/science.1957169
[9] Matten, P. et al. MHz swept-source OCT for clinical applications. Investigative Ophthalmology & Visual Science 61, 2539 (2020).
[10] Webster, P. J. L. et al. Automatic real-time guidance of laser machining with inline coherent imaging. Journal of Laser Applications 23, 022001 (2011). doi: 10.2351/1.3567955
[11] Hayashi, N. et al. In-process measurement of a keyhole using a low-coherence interferometer with a high repetition rate. Optics Express 29, 32169-32178 (2021). doi: 10.1364/OE.435139
[12] Tomlins, P. H. et al. Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts. Biomedical Optics Express 2, 1319-1327 (2011). doi: 10.1364/BOE.2.001319
[13] Kamiya, M. & Aoshima, S. I. Real-time monitoring of processed hole depth under femtosecond laser processing. The Review of Laser Engineering 33, 685-689 (2005). doi: 10.2184/lsj.33.685
[14] Fujimoto, M. et al. Depth monitoring system during laser processing using KTN-based wavelength-swept light source of 1.3-µm wavelength band. Proceedings of SPIE 1169, High-Power Laser Materials Processing: Applications, Diagnostics, and Systems X. SPIE, 2021, 1167908.
[15] Kuranov, R. V. et al. Optical coherence tomography for in situ monitoring of laser corneal ablation. Journal of Biomedical Optics 7, 633-642 (2002). doi: 10.1117/1.1501891
[16] O h, W. Y. et al. Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring. Applied Physics Letters 88, 103902 (2006). doi: 10.1063/1.2179125
[17] Massow, O., Will, F. & Lubatschowski, H. Optical coherence tomography controlled femtosecond laser microsurgery system. Proceedings of SPIE 6627, Optical Coherence Tomography and Coherence Techniques Ⅲ. Munich: SPIE, 2007, 228-233.
[18] Webster, P. J. L. et al. In situ 24kHz coherent imaging of morphology change in laser percussion drilling. Optics Letters 35, 646-648 (2010). doi: 10.1364/OL.35.000646
[19] Hayasaki, Y. et al. Variable holographic femtosecond laser processing by use of a spatial light modulator. Applied Physics Letters 87, 031101 (2005). doi: 10.1063/1.1992668
[20] Hasegawa, S., Hayasaki, Y. & Nishida, N. Holographic femtosecond laser processing with multiplexed phase fresnel lenses. Optics Letters 31, 1705-1707 (2006). doi: 10.1364/OL.31.001705
[21] Hasegawa, S., Shiono, K. & Hayasaki, Y. Femtosecond laser processing with a holographic line-shaped beam. Optics Express 23, 23185-23194 (2015). doi: 10.1364/OE.23.023185
[22] Chinn, S. R., Swanson, E. A. & Fujimoto, J. G. Optical coherence tomography using a frequency-tunable optical source. Optics Letters 22, 340-342 (1997). doi: 10.1364/OL.22.000340
[23] Fercher, A. F. et al. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications 117, 43-48 (1995). doi: 10.1016/0030-4018(95)00119-S
[24] Yasuno, Y. et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Optics Express 13, 10652-10664 (2005). doi: 10.1364/OPEX.13.010652
[25] Fujimoto, M. et al. Stable wavelength-swept light source designed for industrial applications using KTN beam-scanning technology. Proceedings of SPIE 10110, Photonic Instrumentation Engineering IV. San Francisco: SPIE, 2017, 101100Q.
[26] Sakuma, K. et al. Holographic laser sweeper for in-process debris removal. Applied Physics B 119, 533-538 (2015).
[27] Abe, T. et al. In-process debris removal in femtosecond laser processing. Applied Physics A 123, 700 (2017). doi: 10.1007/s00339-017-1333-3