[1] Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608 (2019). e23. doi: 10.1016/j.cell.2019.11.004
[2] Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019). doi: 10.1038/s41592-019-0435-6
[3] Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods 16, 1054–1062 (2019).
[4] McDole, K. et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175, 859–876 (2018). e33. doi: 10.1016/j.cell.2018.09.031
[5] Dey, N. et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69, 260–266 (2006). doi: 10.1002/jemt.20294
[6] McNally, J. G. et al. Three-dimensional imaging by deconvolution microscopy. Methods 19, 373–385 (1999). doi: 10.1006/meth.1999.0873
[7] Xu, C. et al. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA 93, 10763–10768 (1996). doi: 10.1073/pnas.93.20.10763
[8] Keller, P. J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010). doi: 10.1038/nmeth.1476
[9] Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005). doi: 10.1073/pnas.0406877102
[10] Bewersdorf, J., Pick, R. & Hell, S. W. Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998). doi: 10.1364/OL.23.000655
[11] Prevedel, R. et al. Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nat. Methods 13, 1021–1028 (2016). doi: 10.1038/nmeth.4040
[12] Salomé, R. et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Methods 154, 161–174 (2006). doi: 10.1016/j.jneumeth.2005.12.010
[13] Broxton, M. et al. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express 21, 25418–25439 (2013). doi: 10.1364/OE.21.025418
[14] Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014). doi: 10.1038/nmeth.2964
[15] Levoy, M. et al. Light field microscopy. ACM Trans. Graph. 25, 924–934 (2006). doi: 10.1145/1141911.1141976
[16] Lin, X. et al. Camera array based light field microscopy. Biomed. Opt. Express 6, 3179–3189 (2015). doi: 10.1364/BOE.6.003179
[17] Cong, L. et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, e28158 (2017). doi: 10.7554/eLife.28158
[18] Li, H. Y. et al. Fast, volumetric live-cell imaging using high-resolution light-field microscopy. Biomed. Opt. Express 10, 29–49 (2019). doi: 10.1364/BOE.10.000029
[19] Guo, C. L. et al. Fourier light-field microscopy. Opt. Express 27, 25573–25594 (2019). doi: 10.1364/OE.27.025573
[20] Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972). doi: 10.1364/JOSA.62.000055
[21] Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974). doi: 10.1086/111605
[22] Wagner, N. et al. Instantaneous isotropic volumetric imaging of fast biological processes. Nat. Methods 16, 497–500 (2019). doi: 10.1038/s41592-019-0393-z
[23] Nöbauer, T. et al. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy. Nat. Methods 14, 811–818 (2017). doi: 10.1038/nmeth.4341
[24] Pégard, N. C. et al. Compressive light-field microscopy for 3D neural activity recording. Optica 3, 517–524 (2016). doi: 10.1364/OPTICA.3.000517
[25] Cohen, N. et al. Enhancing the performance of the light field microscope using wavefront coding. Opt. Express 22, 24817–24839 (2014). doi: 10.1364/OE.22.024817
[26] Wu, J. M. et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell (2021).
[27] Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 15, 429–432 (2018). doi: 10.1038/s41592-018-0008-0
[28] Stefanoiu, A. et al. Artifact-free deconvolution in light field microscopy. Opt. Express 27, 31644–31666 (2019). doi: 10.1364/OE.27.031644
[29] Lu, Z. et al. Phase-space deconvolution for light field microscopy. Opt. Express 27, 18131–18145 (2019). doi: 10.1364/OE.27.018131
[30] Zeyde, R., Elad, M. & Protter, M. On single image scale-up using sparse-representations. in Proc. 7th International Conference on Curves and Surfaces. (Springer, Avignon, 2012).
[31] Wang, Z. et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). doi: 10.1109/TIP.2003.819861
[32] Zhou, P. C. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018). doi: 10.7554/eLife.28728
[33] Zhang, Z. K. et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat. Biotechnol. 39, 74–83 (2021). doi: 10.1038/s41587-020-0628-7
[34] Liu, H. Y. et al. 3D imaging in volumetric scattering media using phase-space measurements. Opt. Express 23, 14461–14471 (2015). doi: 10.1364/OE.23.014461
[35] Guo, C. L., Liu, W. H. & Jia, S. Fourier-domain light-field microscopy. Biophotonics Congress: Optics in the Life Sciences Congress 2019. (OSA, Tucson, 2019).
[36] Gu, M. Advanced Optical Imaging Theory. (Springer, Berlin, 2000).
[37] Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging. Nat. Methods 14, 869–872 (2017). doi: 10.1038/nmeth.4337
[38] Yang, J. C. et al. Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010). doi: 10.1109/TIP.2010.2050625
[39] Aharon, M., Elad, M. & Bruckstein, A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006). doi: 10.1109/TSP.2006.881199
[40] Ljosa, V., Sokolnicki, K. L. & Carpenter, A. E. Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 (2012). doi: 10.1038/nmeth.2083
[41] Kalinin, A. A. et al. 3D cell nuclear morphology: microscopy imaging dataset and voxel-based morphometry classification results. in Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. (IEEE, Salt Lake City, 2018).
[42] Pati, Y. C., Rezaiifar, R. & Krishnaprasad, P. S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. in Proc. 27th Asilomar Conference on Signals, Systems and Computers. (IEEE, Pacific Grove, 1993).
[43] Rasal, T. et al. Mixed poisson gaussian noise reduction in fluorescence microscopy images using modified structure of wavelet transform. IET Image Process. 15, 1383–1398 (2021). doi: 10.1049/ipr2.12112
[44] Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016). doi: 10.1016/j.neuron.2015.11.037