[1] Mathai, P. P., Liddle, J. A. & Stavis, S. M. Optical tracking of nanoscale particles in microscale environments. Appl. Phys. Rev. 3, 011105 (2016). doi: 10.1063/1.4941675
[2] Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002). doi: 10.1016/S0006-3495(02)75618-X
[3] McGray, C., Copeland, C. R., Stavis, S. M. & Geist, J. Centroid precision and orientation precision of planar localization microscopy. J. Microsc. 263, 238–249 (2016). doi: 10.1111/jmi.12384
[4] Lindén, M., Ćurić, V., Amselem, E. & Elf, J. Pointwise error estimates in localization microscopy. Nat. Commun. 8, 15115 (2017). doi: 10.1038/ncomms15115
[5] Waters, J. C. Accuracy and precision in quantitative fluorescence microscopy. J. Cell Biol. 185, 1135–1148 (2009). doi: 10.1083/jcb.200903097
[6] Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014). doi: 10.1038/nmeth.2843
[7] Pertsinidis, A., Zhang, Y. X. & Chu, S. Subnanometre single-molecule localization, registration and distance measurements. Nature 466, 647–651 (2010). doi: 10.1038/nature09163
[8] Huhle, A. et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nat. Commun. 6, 5885 (2015). doi: 10.1038/ncomms6885
[9] Colomb, W., Czerski, J., Sau, J. D. & Sarkar, S. K. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. J. Microsc. 266, 298–306 (2017). doi: 10.1111/jmi.12539
[10] Yildiz, A. et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).
[11] Copeland, C. R., McGray, C. D., Geist, J., Aksyuk, V. A. & Stavis, S. M. Characterization of electrothermal actuation with nanometer and microradian precision. Proceedings of the 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, Anchorage, AK, USA, pp 792–795 (2015).
[12] Copeland, C. R., McGray, C. D., Geist, J., Aksyuk, V. A. & Stavis, S. M. Transfer of motion through a microelectromechanical linkage at nanometer and microradian scales. Microsyst. Nanoeng. 2, 16055 (2016). doi: 10.1038/micronano.2016.55
[13] ISO. International Vocabulary of Basic and General Terms in Metrology (VIM). 3rd edn. International Organization for Standardization, Geneva, Switzerland; (2004).
[14] Farid, H. & Popescu, A. C. Blind removal of lens distortion. J. Opt. Soc. Am. A 18, 2072–2078 (2001). doi: 10.1364/JOSAA.18.002072
[15] Mortensen, K. I., Sung, J., Flyvbjerg, H. & Spudich, J. A. Optimized measurements of separations and angles between intra-molecular fluorescent markers. Nat. Commun. 6, 8621 (2015). doi: 10.1038/ncomms9621
[16] Hanser, B. M., Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. Phase-retrieved pupil functions in wide-field fluorescence microscopy. J. Microsc. 216, 32–48 (2004). doi: 10.1111/j.0022-2720.2004.01393.x
[17] Zheng, G. A., Ou, X. Z., Horstmeyer, R. & Yang, C. H. Characterization of spatially varying aberrations for wide field-of-view microscopy. Opt. Express 21, 15131–15143 (2013). doi: 10.1364/OE.21.015131
[18] Dai, X. L., Xie, H. M., Li, C. W., Wu, Z. & Geng, H. X. High-accuracy magnification calibration for a microscope based on an improved discrete fourier transform. Opt. Eng. 52, 114102 (2013). doi: 10.1117/1.OE.52.11.114102
[19] Reuss, M. et al. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures. New J. Phys. 19, 025013 (2017). doi: 10.1088/1367-2630/aa5f74
[20] Steinhauer, C., Jungmann, R., Sobey, T. L., Simmel, F. C. & Tinnefeld, P. DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Ed. 48, 8870–8873 (2009). doi: 10.1002/anie.200903308
[21] Treegate, K., Rasamessard, A., Osotchan, T. & Hodak, J. H. X–Y sample scanning stage and calibration method suitable for single-molecule detection. Sens. Actuators B Chem. 150, 239–246 (2010). doi: 10.1016/j.snb.2010.07.008
[22] DeWitt, M. A., Chang, A. Y., Combs, P. A. & Yildiz, A. Cytoplasmic dynein moves through uncoordinated stepping of the AAA + ring domains. Science 335, 221–225 (2012). doi: 10.1126/science.1215804
[23] James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012). doi: 10.1038/nature11220
[24] Matsuzawa T., Ryu G., Eda Y., Morita T. Lens evaluation device. US patent 7747101. 29 June 2010.
[25] Pertsinidis, A. et al. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ. Proc. Natl. Acad. Sci. USA 110, E2812–E2820 (2013).
[26] Koyama-Honda, I. et al. Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys. J. 88, 2126–2136 (2005). doi: 10.1529/biophysj.104.048967
[27] Von Diezmann, A., Lee, M. Y., Lew, M. D. & Moerner, W. E. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. Optica 2, 985–993 (2015). doi: 10.1364/OPTICA.2.000985
[28] Copeland C. R., et al. Aperture arrays for subnanometer calibration of optical microscopes. Proceedings of 2017 International Conference on Optical MEMS and Nanophotonics; 13–17 August. IEEE: Santa Fe, NM, USA, pp 1–2 (2017).
[29] Mortensen, K. I. & Flyvbjerg, H. "Calibration-on-the-spot": How to calibrate an EMCCD camera from its images. Sci. Rep. 6, 28680 (2016). doi: 10.1038/srep28680
[30] Long, F., Zeng, S. Q. & Huang, Z. L. Effects of fixed pattern noise on single molecule localization microscopy. Phys. Chem. Chem. Phys. 16, 21586–21594 (2014). doi: 10.1039/C4CP02280G
[31] Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013). doi: 10.1038/nmeth.2488
[32] Lin, R. S., Clowsley, A. H., Jayasinghe, I. D., Baddeley, D. & Soeller, C. Algorithmic corrections for localization microscopy with sCMOS cameras - characterisation of a computationally efficient localization approach. Opt. Express 25, 11701–11716 (2017). doi: 10.1364/OE.25.011701
[33] Douglass, K. M., Sieben, C., Archetti, A., Lambert, A. & Manley, S. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination. Nat. Photonics 10, 705–708 (2016). doi: 10.1038/nphoton.2016.200
[34] Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010). doi: 10.1038/nmeth.1447
[35] Abraham, A. V., Ram, S., Chao, J., Ward, E. S. & Ober, R. J. Quantitative study of single molecule location estimation techniques. Opt. Express 17, 23352–23373 (2009). doi: 10.1364/OE.17.023352
[36] Hecht E. Optics. 4th edn, Addison Wesley Longman Inc., San Francisco, California, USA (1998).
[37] Masters B. R. Book Rvw: handbook of biological confocal microscopy. 2nd edn. J. B. Pawley (eds). Opt. Eng. 35, 2765 (1996).
[38] Liu, S., Kromann, E. B., Krueger, W. D., Bewersdorf, J. & Lidke, K. A. Three dimensional single molecule localization using a phase retrieved pupil function. Opt. Express 21, 29462–29487 (2013). doi: 10.1364/OE.21.029462
[39] Carter, A. R. et al. Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl. Opt. 46, 421–427 (2007). doi: 10.1364/AO.46.000421
[40] Grover, G., Mohrman, W. & Piestun, R. Real-time adaptive drift correction for super-resolution localization microscopy. Opt. Express 23, 23887–23898 (2015). doi: 10.1364/OE.23.023887
[41] Lee, S. H. et al. Using fixed fiduciary markers for stage drift correction. Opt. Express 20, 12177–12183 (2012). doi: 10.1364/OE.20.012177
[42] Balram, K. C. et al. The nanolithography toolbox. J. Res Natl. Inst. Stand. Technol. 121, 464–475 (2016). doi: 10.6028/jres.121.024
[43] Lagarias, J. C., Reeds, J. A., Wright, M. H. & Wright, P. E. Convergence properties of the nelder--mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998). doi: 10.1137/S1052623496303470
[44] Blythe, K. L., Titus, E. J. & Willets, K. A. Objective-induced point spread function aberrations and their impact on super-resolution microscopy. Anal. Chem. 87, 6419–6424 (2015). doi: 10.1021/acs.analchem.5b01848
[45] Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9, 724–726 (2012). doi: 10.1038/nmeth.2071
[46] Small, A. & Stahlheber, S. Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods 11, 267–279 (2014). doi: 10.1038/nmeth.2844
[47] Ma, H. Q., Xu, J. Q., Jin, J. Y., Huang, Y. & Liu, Y. A simple marker-assisted 3D nanometer drift correction method for superresolution microscopy. Biophys. J. 112, 2196–2208 (2017). doi: 10.1016/j.bpj.2017.04.025
[48] Burke, D., Patton, B., Huang, F., Bewersdorf, J. & Booth, M. J. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica 2, 177–185 (2015). doi: 10.1364/OPTICA.2.000177
[49] Zernike, V. F. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica. 1, 689–704 (1934).
[50] Ahn, S. & Fessler, J. A. Standard errors of mean, variance, and standard deviation estimators. The University of Michigan, Michigan, pp 1–2 (2003).
[51] Arimoto, R. & Murray, J. M. A common aberration with water-immersion objective lenses. J. Microsc. 216, 49–51 (2004). doi: 10.1111/j.0022-2720.2004.01383.x
[52] Lafarge, T. & Possolo, A. The NIST uncertainty machine. NCSLI Meas. J. Meas. Sci. 10, 20–27 (2015).
[53] Postek, M. T. & Vladar, A. E. Critical dimension metrology and the scanning electron microscope. In: A. C. Diebold (ed) Handbook of Silicon Semiconductor Metrology. Marcel Dekker Inc, New York-Basel (2001).
[54] Carlini, L., Holden, S. J., Douglass, K. M. & Manley, S. Correction of a depth-dependent lateral distortion in 3D super-resolution imaging. PLoS ONE 10, e0142949 (2015).
[55] Abrahamsson, S. et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10, 60–63 (2013). doi: 10.1038/nmeth.2277
[56] Dong, B. Q. et al. Super-resolution spectroscopic microscopy via photon localization. Nat. Commun. 7, 12290 (2016). doi: 10.1038/ncomms12290