[1] |
Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008). doi: 10.1038/nphoton.2008.47 |
[2] |
Valle, G. D., Osellame, R. & Laporta, P. Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A: Pure Appl. Opt. 11, 013001 (2009). doi: 10.1088/1464-4258/11/1/013001 |
[3] |
Malinauskas, M. et al. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep. 533, 1–31 (2013). doi: 10.1016/j.physrep.2013.07.005 |
[4] |
Gross, S. & Withford, M. J. Ultrafast-laser-inscribed 3d integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015). doi: 10.1515/nanoph-2015-0020 |
[5] |
Hohmann, J. K. et al. Three-dimensional μ-printing: an enabling technology. Adv. Optical Mater. 3, 1488–1507 (2015). doi: 10.1002/adom.201500328 |
[6] |
Itoh, K. et al. Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006). doi: 10.1557/mrs2006.159 |
[7] |
Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014). doi: 10.1038/lsa.2014.30 |
[8] |
Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016). doi: 10.1038/lsa.2016.133 |
[9] |
Kuroiwa, Y. et al. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. Opt. Express 12, 1908–1915 (2004). doi: 10.1364/OPEX.12.001908 |
[10] |
Kato, J. I., Sun, H. B. & Kawata, S. Multiple-spot parallel processing for laser micro nanofabrication. Appl. Phys. Lett. 86, 044102 (2005). doi: 10.1063/1.1855404 |
[11] |
Hayasaki, Y. et al. Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl. Phys. Lett. 87, 031101 (2005). doi: 10.1063/1.1992668 |
[12] |
Kelemen, L., Valkai, S. & Ormos, P. Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Opt. Express 15, 14488–14497 (2007). doi: 10.1364/OE.15.014488 |
[13] |
Jenness, N. J. et al. Three-dimensional parallel holographic micropatterning using a spatial light modulator. Opt. Express 16, 15942–15948 (2008). doi: 10.1364/OE.16.015942 |
[14] |
Kuang, Z. et al. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Appl. Surf. Sci. 255, 2284–2289 (2008). doi: 10.1016/j.apsusc.2008.07.091 |
[15] |
Thalhammer, G. et al. Speeding up liquid crystal SLMs using overdrive with phase change reduction. Opt. Express 21, 1779–1797 (2013). doi: 10.1364/OE.21.001779 |
[16] |
Engström, D. et al. Calibration of spatial light modulators suffering from spatially varying phase response. Opt. Express 21, 16086–16103 (2013). doi: 10.1364/OE.21.016086 |
[17] |
Strauss, J. et al. Evaluation and calibration of lcos slm for direct laser structuring with tailored intensity distributions. Phys. Procedia 83, 1160–1169 (2016). doi: 10.1016/j.phpro.2016.08.122 |
[18] |
Török, P. et al. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation. J. Opt. Soc. Am. A 12, 325–332 (1995). doi: 10.1364/JOSAA.12.000325 |
[19] |
Marcinkevičius, A. et al. Effect of refractive index-mismatch on laser microfabrication in silica glass. Appl. Phys. A 76, 257–260 (2003). |
[20] |
Sun, Q. et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica. J. Opt. A: Pure Appl. Opt. 7, 655–659 (2005). doi: 10.1088/1464-4258/7/11/006 |
[21] |
Hnatovsky, C. et al. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations. J. Appl. Phys. 98, 013517 (2005). doi: 10.1063/1.1944223 |
[22] |
Huot, N. et al. Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass. Opt. Express 15, 12395–12408 (2007). doi: 10.1364/OE.15.012395 |
[23] |
Booth, M. J., Neil, M. A. A. & Wilson, T. Aberration correction for confocal imaging in refractive-index-mismatched media. J. Microsc. 192, 90–98 (1998). doi: 10.1111/j.1365-2818.1998.99999.x |
[24] |
Bisch, N. et al. Adaptive optics aberration correction for deep direct laser written waveguides in the heating regime. Appl. Phys. A 125, 364 (2019). doi: 10.1007/s00339-019-2635-4 |
[25] |
Menssen, A. J. et al. A photonic topological mode bound to a vortex. arXiv 1901, 04439 (2019). |
[26] |
Salter, P. S. et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation. Opt. Lett. 43, 5993–5996 (2018). doi: 10.1364/OL.43.005993 |
[27] |
Salter, P. S. & Booth, M. J. Focussing over the edge: adaptive subsurface laser fabrication up to the sample face. Opt. Express 20, 19978–19989 (2012). doi: 10.1364/OE.20.019978 |
[28] |
Stallinga, S. Axial birefringence in high-numerical-aperture optical systems and the light distribution close to focus. J. Optical Soc. Am. A 18, 2846–2859 (2001). doi: 10.1364/JOSAA.18.002846 |
[29] |
Zhou, G. Y. et al. Axial birefringence induced focus splitting in lithium niobate. Opt. Express 17, 17970–17975 (2009). doi: 10.1364/OE.17.017970 |
[30] |
Karpinski, P. et al. Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate. Opt. Express 24, 7456–7476 (2016). doi: 10.1364/OE.24.007456 |
[31] |
Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014). doi: 10.1038/lsa.2014.46 |
[32] |
Booth, M. J. et al. Predictive aberration correction for multilayer optical data storage. Appl. Phys. Lett. 88, 031109 (2006). doi: 10.1063/1.2166684 |
[33] |
Jesacher, A. et al. Adaptive optics for direct laser writing with plasma emission aberration sensing. Opt. Express 18, 656–661 (2010). doi: 10.1364/OE.18.000656 |
[34] |
Hering, J., Waller, E. H. & von Freymann, G. Automated aberration correction of arbitrary laser modes in high numerical aperture systems. Opt. Express 24, 28500–28508 (2016). doi: 10.1364/OE.24.028500 |
[35] |
Mauclair, C. A. et al. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt. Express 16, 5481–5492 (2008). doi: 10.1364/OE.16.005481 |
[36] |
Simmonds, R. D. et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Opt. Express 19, 24122–24128 (2011). doi: 10.1364/OE.19.024122 |
[37] |
Salter, P. S., Iqbal, Z. & Booth, M. J. Analysis of the three-dimensional focal positioning capability of adaptive optic elements. Int. J. Optomechatronics 7, 1–14 (2013). doi: 10.1080/15599612.2012.758791 |
[38] |
Salter, P. S. et al. Exploring the depth range for three-dimensional laser machining with aberration correction. Opt. Express 22, 17644–17656 (2014). doi: 10.1364/OE.22.017644 |
[39] |
Cumming, B. P. et al. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass. Opt. Express 22, 689–698 (2014). doi: 10.1364/OE.22.000689 |
[40] |
Huang, L. et al. Aberration correction for direct laser written waveguides in a transverse geometry. Opt. Express 24, 10565–10574 (2016). doi: 10.1364/OE.24.010565 |
[41] |
Feng, Z. et al. Invisibility cloak printed on a photonic chip. Sci. Rep. 6, 28527 (2016). doi: 10.1038/srep28527 |
[42] |
Tang, H. et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4, eaat3174 (2018). doi: 10.1126/sciadv.aat3174 |
[43] |
Wang, P. et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing. Sci. Rep. 7, 41211 (2017). doi: 10.1038/srep41211 |
[44] |
Huang, L. L. et al. Waveguide fabrication in KDP crystals with femtosecond laser pulses. Appl. Phys. A 118, 831–836 (2015). doi: 10.1007/s00339-014-8899-9 |
[45] |
Courvoisier, A., Booth, M. J. & Salter, P. S. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl. Phys. Lett. 109, 031109 (2016). doi: 10.1063/1.4959267 |
[46] |
Bharadwaj, V. et al. Femtosecond laser inscription of Bragg grating waveguides in bulk diamond. Opt. Lett. 42, 3451–3453 (2017). doi: 10.1364/OL.42.003451 |
[47] |
Stone, A. et al. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics. Sci. Rep. 5, 10391 (2015). doi: 10.1038/srep10391 |
[48] |
Stone, A. et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating. J. Optical Soc. Am. B 30, 1234–1240 (2013). doi: 10.1364/JOSAB.30.001234 |
[49] |
Waller, E. H., Renner, M. & von Freymann, G. Active aberration- and point-spread-function control in direct laser writing. Opt. Express 20, 24949–24956 (2012). doi: 10.1364/OE.20.024949 |
[50] |
Cumming, B. P. et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt. Express 19, 9419–9425 (2011). doi: 10.1364/OE.19.009419 |
[51] |
Cumming, B. P. et al. Effect of refractive index mismatch aberration in arsenic trisulfide. Appl. Phys. B 109, 227–232 (2012). doi: 10.1007/s00340-012-5180-9 |
[52] |
Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801–805 (2013). doi: 10.1038/nphoton.2013.233 |
[53] |
Cumming, B. P. et al. Bragg-mirror-like circular dichroism in bio-inspired quadruple-gyroid 4srs nanostructures. Light Sci. Appl. 6, e16192 (2017). doi: 10.1038/lsa.2016.192 |
[54] |
Sun, B. S., Salter, P. S. & Booth, M. J. High conductivity micro-wires in diamond following arbitrary paths. Appl. Phys. Lett. 105, 231105 (2014). doi: 10.1063/1.4902998 |
[55] |
Booth, M. J. et al. Study of cubic and hexagonal cell geometries of a 3D diamond detector with a proton micro-beam. Diam. Relat. Mater. 77, 137–145 (2017). doi: 10.1016/j.diamond.2017.06.014 |
[56] |
Chen, Y. C. et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 11, 77–80 (2017). doi: 10.1038/nphoton.2016.234 |
[57] |
Stephen, C. J. et al. Three-dimensional solid-state qubit arrays with long-lived spin coherence. ArXiv 1807, 03643 (2018). |
[58] |
Chen, Y. C. et al. Laser writing of individual atomic defects in a crystal with near-unity yield. Optica 6, 662–667 (2019). doi: 10.1364/OPTICA.6.000662 |
[59] |
Voigtländer, C. et al. Variable wavefront tuning with a SLM for tailored femtosecond fiber Bragg grating inscription. Opt. Lett. 41, 17–20 (2016). doi: 10.1364/OL.41.000017 |
[60] |
Jenne, M. et al. High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams. Opt. Lett. 43, 3164–3167 (2018). doi: 10.1364/OL.43.003164 |
[61] |
Tartan, C. C. et al. Generation of 3-dimensional polymer structures in liquid crystalline devices using direct laser writing. RSC Adv. 7, 507–511 (2017). doi: 10.1039/C6RA25091B |
[62] |
Tartan, C. C. et al. Read on demand images in laser-written polymerizable liquid crystal devices. Adv. Optical Mater. 6, 1800515 (2018). doi: 10.1002/adom.201800515 |
[63] |
Ams, M. et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13, 5676–5681 (2005). doi: 10.1364/OPEX.13.005676 |
[64] |
Cheng, Y. et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett. 28, 55–57 (2003). doi: 10.1364/OL.28.000055 |
[65] |
Salter, P. S. et al. Adaptive slit beam shaping for direct laser written waveguides. Opt. Lett. 37, 470–472 (2012). doi: 10.1364/OL.37.000470 |
[66] |
Cumming, B. P. et al. Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective. Opt. Express 21, 19135–19141 (2013). doi: 10.1364/OE.21.019135 |
[67] |
Liao, Y. et al. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam. Sci. Rep. 6, 28790 (2016). doi: 10.1038/srep28790 |
[68] |
Qi, J. et al. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses. Opt. Mater. Express 6, 2554–2559 (2016). doi: 10.1364/OME.6.002554 |
[69] |
Cerullo, G. et al. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing. Opt. Lett. 27, 1938–1940 (2002). doi: 10.1364/OL.27.001938 |
[70] |
Thomson, R. R. et al. Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. Opt. Express 16, 12786–12793 (2008). doi: 10.1364/OE.16.012786 |
[71] |
de la Cruz, A. R. et al. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing. Opt. Express 17, 20853–20859 (2009). doi: 10.1364/OE.17.020853 |
[72] |
Hendriks, A. et al. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator. Proceedings of SPIE8490, Laser Beam Shaping XⅢ. (SPIE, San Diego, CA, USA, 2012). |
[73] |
Romero, L. A. & Dickey, F. M. Lossless laser beam shaping. J. Opt. Soc. Am. A 13, 751–760 (1996). |
[74] |
Sanner, N. et al. Direct ultrafast laser micro-structuring of materials using programmable beam shaping. Opt. Lasers Eng. 45, 737–741 (2007). doi: 10.1016/j.optlaseng.2006.10.009 |
[75] |
Sanner, N. et al. Programmable focal spot shaping of amplified femtosecond laser pulses. Opt. Lett. 30, 1479–1481 (2005). doi: 10.1364/OL.30.001479 |
[76] |
Kuang, Z. et al. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator. Opt. Lasers Eng. 70, 1–5 (2015). |
[77] |
Li, J. N. et al. Imaging-based amplitude laser beam shaping for material processing by 2D reflectivity tuning of a spatial light modulator. Appl. Opt. 55, 1095–1100 (2016). doi: 10.1364/AO.55.001095 |
[78] |
Häfner, T. et al. Tailored laser beam shaping for efficient and accurate microstructuring. Appl. Phys. A 124, 111 (2018). doi: 10.1007/s00339-017-1530-0 |
[79] |
Wang, A. D. et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv. Mater. 27, 6238–6243 (2015). doi: 10.1002/adma.201503289 |
[80] |
Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161 |
[81] |
Mills, B. et al. Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams. Appl. Phys. A 108, 651–655 (2012). doi: 10.1007/s00339-012-6945-z |
[82] |
Hnatovsky, C. et al. Materials processing with a tightly focused femtosecond laser vortex pulse. Opt. Lett. 35, 3417–3419 (2010). doi: 10.1364/OL.35.003417 |
[83] |
Nivas, J. J. J. et al. Laser ablation of silicon induced by a femtosecond optical vortex beam. Opt. Lett. 40, 1146–4614 (2015). |
[84] |
Mishchik, K. et al. Patterning linear and nonlinear optical properties of photosensitive glasses by femtosecond structured light. Opt. Lett. 40, 201–204 (2015). doi: 10.1364/OL.40.000201 |
[85] |
Yang, L. et al. Direct laser writing of complex microtubes using femtosecond vortex beams. Appl. Phys. Lett. 110, 221103 (2017). doi: 10.1063/1.4984744 |
[86] |
Lin, H. & Gu, M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam. Appl. Phys. Lett. 102, 084103 (2013). doi: 10.1063/1.4794030 |
[87] |
Zhang, S. J. et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl. Phys. Lett. 105, 061101 (2014). doi: 10.1063/1.4893007 |
[88] |
Zhang, C. C. et al. A rapid two-photon fabrication of tube array using an annular Fresnel lens. Opt. Express 22, 3983–3990 (2014). doi: 10.1364/OE.22.003983 |
[89] |
Ni, J. C. et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 6, e17011 (2017). doi: 10.1038/lsa.2017.11 |
[90] |
Wang, C. W. et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano 13, 4667–4676 (2019). doi: 10.1021/acsnano.9b00893 |
[91] |
Li, L. J. et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009). doi: 10.1126/science.1168996 |
[92] |
Scott, T. F. et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009). doi: 10.1126/science.1167610 |
[93] |
Gan, Z. S. et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013). doi: 10.1038/ncomms3061 |
[94] |
Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7, 22–44 (2013). doi: 10.1002/lpor.201100046 |
[95] |
Lee, E. et al. Sub-diffraction-limited fluorescent patterns by tightly focusing polarized femtosecond vortex beams in a silver-containing glass. Opt. Express 25, 10565–10573 (2017). doi: 10.1364/OE.25.010565 |
[96] |
Gould, T. J. et al. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998–21009 (2012). doi: 10.1364/OE.20.020998 |
[97] |
Duocastella, M. & Arnold, C. B. Bessel and annular beams for materials processing. Laser Photonics Rev. 6, 607–621 (2012). doi: 10.1002/lpor.201100031 |
[98] |
Courvoisier, F. et al. Applications of femtosecond Bessel beams to laser ablation. Appl. Phys. A 112, 29–34 (2013). doi: 10.1007/s00339-012-7201-2 |
[99] |
Stoian, R. et al. Ultrafast Bessel beams: advanced tools for laser materials processing. Adv. Opt. Technol. 7, 165–174 (2018). doi: 10.1515/aot-2018-0009 |
[100] |
Lamperti, M. et al. Invited article: filamentary deposition of laser energy in glasses with Bessel beams. APL Photonics 3, 120805 (2018). doi: 10.1063/1.5053085 |
[101] |
Arlt, J. & Dholakia, K. Generation of high-order Bessel beams by use of an axicon. Opt. Commun. 177, 297–301 (2000). doi: 10.1016/S0030-4018(00)00572-1 |
[102] |
Ouadghiri-Idrissi, I. et al. Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator. Opt. Express 24, 11495–11504 (2016). doi: 10.1364/OE.24.011495 |
[103] |
Mitra, S. et al. Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining. Appl. Opt. 54, 7358–7365 (2015). doi: 10.1364/AO.54.007358 |
[104] |
Bhuyan, M. K. et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett. 97, 081102 (2010). doi: 10.1063/1.3479419 |
[105] |
Bhuyan, M. K. et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams. Appl. Phys. Lett. 104, 021107 (2014). doi: 10.1063/1.4861899 |
[106] |
Garzillo, V. et al. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass. J. Appl. Phys. 120, 013102 (2016). doi: 10.1063/1.4954890 |
[107] |
Rapp, L. et al. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams. Sci. Rep. 6, 34286 (2016). doi: 10.1038/srep34286 |
[108] |
Kumar, S. et al. Study of graphitic microstructure formation in diamond bulk by pulsed Bessel beam laser writing. Appl. Phys. A 123, 698 (2017). doi: 10.1007/s00339-017-1303-9 |
[109] |
Jedrkiewicz, O. et al. Pulsed Bessel beam-induced microchannels on a diamond surface for versatile microfluidic and sensing applications. Opt. Mater. Express 7, 1962–1970 (2017). doi: 10.1364/OME.7.001962 |
[110] |
Duocastella, M. & Arnold, C. B. Enhanced depth of field laser processing using an ultra-high-speed axial scanner. Appl. Phys. Lett. 102, 061113 (2013). doi: 10.1063/1.4791593 |
[111] |
Gamaly, E. G. et al. Interaction of the ultra-short Bessel beam with transparent dielectrics: Evidence of high-energy concentration and multi-TPa pressure. arXiv 1708, 08163 (2017). |
[112] |
Christodoulides, D. N. Accelerating finite energy airy beams. Opt. Lett. 32, 979–981 (2007). doi: 10.1364/OL.32.000979 |
[113] |
Mathis, A. et al. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl. Phys. Lett. 101, 071110 (2012). doi: 10.1063/1.4745925 |
[114] |
Manousidaki, M. et al. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica 3, 525–530 (2016). doi: 10.1364/OPTICA.3.000525 |
[115] |
Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972). |
[116] |
Di Leonardo, R., Ianni, F. & Ruocco, G. Computer generation of optimal holograms for optical trap arrays. Opt. Express 15, 1913–1922 (2007). doi: 10.1364/OE.15.001913 |
[117] |
Sakakura, M. et al. Fabrication of three-dimensional 1x4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt. Express 18, 12136–12143 (2010). doi: 10.1364/OE.18.012136 |
[118] |
Hasegawa, S., Hayasaki, Y. & Nishida, N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt. Lett. 31, 1705–1707 (2006). doi: 10.1364/OL.31.001705 |
[119] |
Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt. Lasers Eng. 70, 26–32 (2015). |
[120] |
Jesacher, A. & Booth, M. J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt. Express 18, 21090–21099 (2010). doi: 10.1364/OE.18.021090 |
[121] |
Waller, E. H. & von Freymann, G. Multi foci with diffraction limited resolution. Opt. Express 21, 21708–21713 (2013). doi: 10.1364/OE.21.021708 |
[122] |
Zhang, Z. Y. et al. Highly uniform parallel microfabrication using a large numerical aperture system. Appl. Phys. Lett. 109, 021109 (2016). doi: 10.1063/1.4955477 |
[123] |
Hasegawa, S. & Hayasaki, Y. Adaptive optimization of a hologram in holographic femtosecond laser processing system. Opt. Lett. 34, 22–24 (2009). doi: 10.1364/OL.34.000022 |
[124] |
Hasegawa, S. & Hayasaki, Y. Second-harmonic optimization of computer-generated hologram. Opt. Lett. 36, 2943–2945 (2011). doi: 10.1364/OL.36.002943 |
[125] |
Sun, B. S. et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl. 7, e17117 (2018). doi: 10.1038/lsa.2017.117 |
[126] |
Hasegawa, S. et al. Massively parallel femtosecond laser processing. Opt. Express 24, 18513–18524 (2016). doi: 10.1364/OE.24.018513 |
[127] |
Obata, K. et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express 18, 17193–17200 (2010). doi: 10.1364/OE.18.017193 |
[128] |
Liu, D. et al. High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl. Phys. B 101, 817–823 (2010). doi: 10.1007/s00340-010-4205-5 |
[129] |
Silvennoinen, M. et al. Parallel femtosecond laser ablation with individually controlled intensity. Opt. Express 22, 2603–2608 (2014). doi: 10.1364/OE.22.002603 |
[130] |
Yamaji, M. et al. Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Appl. Phys. Lett. 93, 041116 (2008). doi: 10.1063/1.2965451 |
[131] |
Vizsnyiczai, G., Kelemen, L. & Ormos, P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Opt. Express 22, 24217–24223 (2014). doi: 10.1364/OE.22.024217 |
[132] |
Ren, H. R. et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array. Opt. Lett. 39, 1621–1624 (2014). doi: 10.1364/OL.39.001621 |
[133] |
Yang, L. et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Opt. Express 25, 8144–8157 (2017). doi: 10.1364/OE.25.008144 |
[134] |
Yang, L. et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Opt. Lett. 42, 743–746 (2017). doi: 10.1364/OL.42.000743 |
[135] |
Hasegawa, S. & Hayasaki, Y. Polarization distribution control of parallel femtosecond pulses with spatial light modulators. Opt. Express 21, 12987–12995 (2013). doi: 10.1364/OE.21.012987 |
[136] |
Hasegawa, S. & Hayasaki, Y. Holographic vector wave femtosecond laser processing. Int. J. Optomechatronics 8, 73–88 (2014). doi: 10.1080/15599612.2014.901456 |
[137] |
Allegre, O. J. et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt. Express 21, 21198–21207 (2013). doi: 10.1364/OE.21.021198 |
[138] |
Ren, H. R., Li, X. P. & Gu, M. Polarization-multiplexed multifocal arrays by aπ-phase-step-modulated azimuthally polarized beam. Opt. Lett. 39, 6771–6774 (2014). doi: 10.1364/OL.39.006771 |
[139] |
Cai, M.-Q. et al. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields. Opt. Lett. 41, 1474–1477 (2016). doi: 10.1364/OL.41.001474 |
[140] |
Matsuo, S., Juodkazis, S. & Misawa, H. Femtosecond laser microfabrication of periodic structures using a microlens array. Appl. Phys. A 80, 683–685 (2005). doi: 10.1007/s00339-004-3108-x |
[141] |
Salter, P. S. & Booth, M. J. Addressable microlens array for parallel laser microfabrication. Opt. Lett. 36, 2302–2304 (2011). doi: 10.1364/OL.36.002302 |
[142] |
Zhang, J. Y. et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901 |
[143] |
Ohfuchi, T. et al. Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass. Opt. Express 25, 23738–23754 (2017). doi: 10.1364/OE.25.023738 |
[144] |
Gittard, S. D. et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express 2, 3167–3178 (2011). doi: 10.1364/BOE.2.003167 |
[145] |
Xu, B. et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci. Rep. 6, 19989 (2016). doi: 10.1038/srep19989 |
[146] |
Zhang, C. C. et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Sci. Rep. 6, 33281 (2016). doi: 10.1038/srep33281 |
[147] |
Xu, B. et al. Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Opt. Express 25, 16739–16753 (2017). doi: 10.1364/OE.25.016739 |
[148] |
Mauclair, C. et al. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt. Express 17, 3531–3542 (2009). doi: 10.1364/OE.17.003531 |
[149] |
Pospiech, M. et al. Double waveguide couplers produced by simultaneous femtosecond writing. Opt. Express 17, 3555–3563 (2009). doi: 10.1364/OE.17.003555 |
[150] |
Sakakura, M. et al. Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides. Opt. Lett. 36, 1065–1067 (2010). |
[151] |
Sakakura, M. et al. Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots. Opt. Lett. 38, 4939–4942 (2013). doi: 10.1364/OL.38.004939 |
[152] |
Wlodarczyk, K. L. et al. Efficient speckle-free laser marking using a spatial light modulator. Appl. Phys. A 116, 111–118 (2014). doi: 10.1007/s00339-013-8186-1 |
[153] |
Li, Y. C. et al. Graphene oxide-based micropatterns via high-throughput multiphoton-induced reduction and ablation. Opt. Express 22, 19726–19734 (2014). doi: 10.1364/OE.22.019726 |
[154] |
Auyeung, R. C. Y. et al. Laser forward transfer based on a spatial light modulator. Appl. Phys. A 102, 21–26 (2011). doi: 10.1007/s00339-010-6054-9 |
[155] |
Auyeung, R. C. Y. et al. Laser forward transfer using structured light. Opt. Express 23, 422–430 (2015). doi: 10.1364/OE.23.000422 |
[156] |
Heath, D. J. et al. Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films. Opt. Mater. Express 5, 1129–1136 (2015). doi: 10.1364/OME.5.001129 |
[157] |
Mills, B. et al. Single-pulse multiphoton polymerization of complex structures using a digital multimirror device. Opt. Express 21, 14853–14858 (2013). doi: 10.1364/OE.21.014853 |
[158] |
Yang, L. et al. Projection two-photon polymerization using a spatial light modulator. Opt. Commun. 331, 82–86 (2014). doi: 10.1016/j.optcom.2014.05.051 |
[159] |
Zhu, G. H. et al. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005). doi: 10.1364/OPEX.13.002153 |
[160] |
Oron, D. & Silberberg, Y. Spatiotemporal coherent control using shaped, temporally focused pulses. Opt. Express 13, 9903–9908 (2005). doi: 10.1364/OPEX.13.009903 |
[161] |
Li, Y. C. et al. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt. Express 20, 19030–19038 (2012). doi: 10.1364/OE.20.019030 |
[162] |
Kim, D. & So, P. T. C. High-throughput three-dimensional lithographic microfabrication. Opt. Lett. 35, 1602–1604 (2010). doi: 10.1364/OL.35.001602 |
[163] |
Gu, C. L. et al. Parallel femtosecond laser light sheet micro-manufacturing based on temporal focusing. Precis. Eng. 50, 198–203 (2017). doi: 10.1016/j.precisioneng.2017.05.006 |
[164] |
Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000). doi: 10.1063/1.1150614 |
[165] |
Hernandez-Rueda, J. et al. Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses. J. Opt. Soc. Am. B 32, 150–156 (2015). |
[166] |
Stoian, R. et al. Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl. Phys. Lett. 80, 353–355 (2002). doi: 10.1063/1.1432747 |
[167] |
Spyridaki, M. et al. Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon. Appl. Phys. Lett. 83, 1474–1476 (2003). doi: 10.1063/1.1602579 |
[168] |
Stoian, R. et al. Spatial and temporal laser pulse design for material processing on ultrafast scales. Appl. Phys. A 114, 119–127 (2014). doi: 10.1007/s00339-013-8081-9 |
[169] |
Englert, L. et al. Control of ionization processes in high band gap materials via tailored femtosecond pulses. Opt. Express 15, 17855–17862 (2007). doi: 10.1364/OE.15.017855 |
[170] |
Hernandez-Rueda, J. et al. Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses. ACS Appl. Mater. Interfaces 7, 6613–6619 (2015). doi: 10.1021/am508925m |
[171] |
Götte, N. et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics. Optica 3, 389–395 (2016). doi: 10.1364/OPTICA.3.000389 |
[172] |
Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016). doi: 10.1038/nature18619 |
[173] |
Jiang, L. et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7, 17134 (2018). doi: 10.1038/lsa.2017.134 |
[174] |
Colombier, J. P. et al. Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from al samples. Phys. Rev. B 74, 224106 (2006). doi: 10.1103/PhysRevB.74.224106 |
[175] |
Leng, N. et al. Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains. Appl. Phys. A 109, 679–684 (2012). doi: 10.1007/s00339-012-7098-9 |
[176] |
Zhao, M. J. et al. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control. Sci. Rep. 5, 13202 (2015). doi: 10.1038/srep13202 |
[177] |
Jiang, L. et al. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains. Opt. Lett. 37, 2781–2783 (2012). doi: 10.1364/OL.37.002781 |
[178] |
Dai, Y. Y. et al. Adaptive measurement and correction of polarization aberrations. Proceedings of SPIE 10886, Adaptive Optics and Wavefront Control for Biological Systems V. (SPIE, San Francisco, CA, USA, 2019). |
[179] |
Kazansky, P. G. et al. "Quill" writing with ultrashort light pulses in transparent materials. Appl. Phys. Lett. 90, 151120 (2007). doi: 10.1063/1.2722240 |
[180] |
Salter, P. S. & Booth, M. J. Dynamic control of directional asymmetry observed in ultrafast laser direct writing. Appl. Phys. Lett. 101, 141109 (2012). doi: 10.1063/1.4756904 |
[181] |
Sun, B. S., Salter, P. S. & Booth, M. J. Pulse front adaptive optics: a new method for control of ultrashort laser pulses. Opt. Express 23, 19348–19357 (2015). doi: 10.1364/OE.23.019348 |
[182] |
He, F. et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35, 1106–1108 (2010). doi: 10.1364/OL.35.001106 |
[183] |
Vitek, D. N. et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Opt. Express 18, 24673–24678 (2010). doi: 10.1364/OE.18.024673 |
[184] |
Bernard, O. et al. Efficient micro processing with high power femtosecond lasers by beam engineering and modelling. Procedia CIRP 74, 310–314 (2018). doi: 10.1016/j.procir.2018.08.121 |
[185] |
Beck, R. et al. Application of cooled spatial light modulator for high power nanosecond laser micromachining. Opt. Express 18, 17059–17065 (2010). doi: 10.1364/OE.18.017059 |
[186] |
Zhu, G. et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications. J. Phys. D: Appl. Phys. 51, 095603 (2018). doi: 10.1088/1361-6463/aaa948 |