[1] |
Sun, J. Y., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Advances 3, 14862-14889 (2013). doi: 10.1039/c3ra41096j |
[2] |
Yang, B. et al. Structural colors in metasurfaces: principle, design and applications. Materials Chemistry Frontiers 3, 750-761 (2019). doi: 10.1039/C9QM00043G |
[3] |
Fu, Y. L. et al. Structural colors: from natural to artificial systems. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology 8, 758-775 (2016). doi: 10.1002/wnan.1396 |
[4] |
Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nature Communications 10, 1004 (2019). doi: 10.1038/s41467-019-08891-x |
[5] |
Kinoshita, S. Structural Colors in the Realm of Nature. (Singapore: World Scientific, 2008). |
[6] |
Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852-855 (2003). doi: 10.1038/nature01941 |
[7] |
Mouchet, S. R. & Vukusic, P. Structural colours in lepidopteran scales. Advances in Insect Physiology 54, 1-53 (2018). |
[8] |
Li, Y. Z. et al. Structural origin of the brown color of barbules in male peacock tail feathers. Physical Review E 72, 010902 (2005). doi: 10.1103/PhysRevE.72.010902 |
[9] |
Franklin, D. et al. Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states. Proceedings of the National Academy of Sciences of the United States of America 117, 13350-13358 (2020). doi: 10.1073/pnas.2001435117 |
[10] |
Jang, J. et al. Kerker-conditioned dynamic cryptographic nanoprints. Advanced Optical Materical 7, 1801070 (2019). |
[11] |
Kim, J. H. et al. Biologically inspired humidity sensor based on three-dimensional photonic crystals. Applied Physics Letters 97, 103701 (2010). doi: 10.1063/1.3486115 |
[12] |
Deparis, O. et al. Theoretical condition for transparency in mesoporous layered optical media: application to switching of hygrochromic coatings. Applied Physics Letters 104, 023704 (2014). doi: 10.1063/1.4862658 |
[13] |
Ghazzal, M. N. et al. Tailored refractive index of inorganic mesoporous mixed-oxide bragg stacks with bio-inspired hygrochromic optical properties. Journal of Materials Chemistry C 1, 6202-6209 (2013). doi: 10.1039/c3tc31178c |
[14] |
Potyrailo, R. A. et al. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nature Communications 6, 7959 (2015). doi: 10.1038/ncomms8959 |
[15] |
Rasson, J. et al. Vapor sensing using a bio-inspired porous silicon photonic crystal. Materialstoday:Proceedings 4, 5006-5012 (2017). |
[16] |
Poncelet, O. et al. Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho. Bioinspiration & Biomimetics 11, 036011 (2016). |
[17] |
Jia, Z. A. et al. Microstructural design for mechanical-optical multifunctionality in the exoskeleton of the flower beetle Torynorrhina flammea. Proceedings of the National Academy of Sciences of the United States of America 118, e2101017118 (2021). doi: 10.1073/pnas.2101017118 |
[18] |
Kolle, M. et al. Bio-inspired band-gap tunable elastic optical multilayer fibers. Advanced Materials 25, 2239-2245 (2013). doi: 10.1002/adma.201203529 |
[19] |
Devlin, Robert C., et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences 113, 10473-10478 (2016). doi: 10.1073/pnas.1611740113 |
[20] |
Vorobyev, A. Y. & Guo, C. L. Colorizing metals with femtosecond laser pulses. Applied Physics Letters 92, 041914 (2008). doi: 10.1063/1.2834902 |
[21] |
Gnilitskyi, I. et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Scientific Reports 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z |
[22] |
Wu, H. et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale 11, 4803-4810 (2019). doi: 10.1039/C8NR09747J |
[23] |
Vorobyev, A. Y. & Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser & Photonics Reviews 7, 385-407 (2013). |
[24] |
Shen, X. D. et al. Colorful and superhydrophobic titanium surfaces textured by obliquely incident femtosecond laser induced micro/nano structures. Optics Communications 466, 125687 (2020). doi: 10.1016/j.optcom.2020.125687 |
[25] |
Brodsky, A. & Kaplan, N. Laser surface texturing using a single diffractive optical element as an alternative for direct laser interference patterning. Journal of Laser Applications 32, 032011 (2020). doi: 10.2351/7.0000030 |
[26] |
Yan, J. W. et al. Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Annals 61, 131-134 (2012). doi: 10.1016/j.cirp.2012.03.070 |
[27] |
Jung, H. J. et al. “Multimode vibration cutting”-a new vibration cutting for highly-efficient and highly-flexible surface texturing. Precision Engineering 72, 111-121 (2021). doi: 10.1016/j.precisioneng.2021.04.003 |
[28] |
Hayasaka, T. et al. Proposal of ‘ImpEC (impact excitation cutting)’ for realization of high-flexibility and high-efficiency micro/nano surface texturing. CIRP Annals 70, 41-44 (2021). doi: 10.1016/j.cirp.2021.04.023 |
[29] |
Tan, N. Y. J. et al. Ultra-precision direct diamond shaping of functional micro features. Journal of Manufacturing Processes 64, 209-223 (2021). doi: 10.1016/j.jmapro.2020.12.064 |
[30] |
Yang, Y., Pan, Y. Y. & Guo, P. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing. Applied Surface Science 402, 400-409 (2017). doi: 10.1016/j.apsusc.2017.01.026 |
[31] |
Zhou, T. F. et al. Algorithm of micro-grooving and imaging processing for the generation of high-resolution structural color images. Nanomanufacturing and Metrology 3, 187-198 (2020). doi: 10.1007/s41871-020-00068-1 |
[32] |
He, Y. P. et al. Generation of high-saturation two-level iridescent structures by vibration-assisted fly cutting. Materials & Design 193, 108839 (2020). |
[33] |
He, Y. P. et al. Diffraction manipulation of visible light with submicron structures for structural coloration fabrication. Optics Express 29, 9294-9311 (2021). doi: 10.1364/OE.419291 |
[34] |
Wang, Y. K. et al. Structural coloration using face turning and variable tool vibration frequency. Journal of Manufacturing Processes 56, 1392-1396 (2020). doi: 10.1016/j.jmapro.2020.04.035 |
[35] |
Yang, Y. & Guo, P. Global tool path optimization of high-resolution image reproduction in ultrasonic modulation cutting for structural coloration. International Journal of Machine Tools and Manufacture 138, 14-26 (2019). doi: 10.1016/j.ijmachtools.2018.11.002 |
[36] |
Zhang, S. J. et al. A review of fly cutting applied to surface generation in ultra-precision machining. International Journal of Machine Tools and Manufacture 103, 13-27 (2016). doi: 10.1016/j.ijmachtools.2016.01.001 |
[37] |
Zhang, J. G. et al. Review of micro/nano machining by utilizing elliptical vibration cutting. International Journal of Machine Tools and Manufacture 106, 109-126 (2016). doi: 10.1016/j.ijmachtools.2016.04.008 |
[38] |
Wang, J. J. et al. Fabrication of structurally colored basso-relievo with modulated elliptical vibration texturing. Precision Engineering 64, 113-121 (2020). doi: 10.1016/j.precisioneng.2020.03.021 |
[39] |
Wang, J. J. et al. On ductile-regime elliptical vibration cutting of silicon with identifying the lower bound of practicable nominal cutting velocity. Journal of Materials Processing Technology 283, 116720 (2020). doi: 10.1016/j.jmatprotec.2020.116720 |
[40] |
Leung, T. P., Lee, W. B. & Lu, X. M. Diamond turning of silicon substrates in ductile-regime. Journal of Materials Processing Technology 73, 42-48 (1998). doi: 10.1016/S0924-0136(97)00210-0 |
[41] |
Suzuki, N. et al. Elliptical vibration cutting of tungsten alloy molds for optical glass parts. CIRP Annals 56, 127-130 (2007). doi: 10.1016/j.cirp.2007.05.032 |
[42] |
Fang, F. Z. et al. A study on mechanism of nano-cutting single crystal silicon. Journal of Materials Processing Technology 184, 407-410 (2007). doi: 10.1016/j.jmatprotec.2006.12.007 |
[43] |
Kazanskiy, N. L. Modeling diffractive optics elements and devices. Proceedings of SPIE 10774, Optical Technologies in Telecommunications 2017. Kazan: SPIE, 2018: 107740O. |
[44] |
Harvey, J. E. & Pfisterer, R. N. Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings. Optical Engineering 58, 087105 (2019). |
[45] |
Harvey, J. E. et al. Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory. Applied Optics 38, 6469-6481 (1999). doi: 10.1364/AO.38.006469 |
[46] |
Johansen, V. E., Andkjær, J. & Sigmund, O. Design of structurally colored surfaces based on scalar diffraction theory. Journal of the Optical Society of America B 31, 207-217 (2014). doi: 10.1364/JOSAB.31.000207 |
[47] |
CIE: International Commission on Illumination, at http://www.cie.co.at/. |
[48] |
Wyman, C., Sloan, P. P. & Shirley, P. Simple analytic approximations to the CIE XYZ color matching functions. Journal of Computer Graphics Techniques 2, 1-11 (2013). |
[49] |
Wang, J. J. et al. An ultrafast 2-D non-resonant cutting tool for texturing micro-structured surfaces. Journal of Manufacturing Processes 48, 86-97 (2019). doi: 10.1016/j.jmapro.2019.10.023 |