[1] Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016). doi: 10.1038/nphys3796
[2] Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006
[3] Schomerus, H. Topologically protected midgap states in complex photonic lattices. Opt. Lett. 38, 1912–1914 (2013). doi: 10.1364/OL.38.001912
[4] Ghatak, A. & Das, T. New topological invariants in non-Hermitian systems. J. Phys. Condens. Matter 31, 263001 (2019). doi: 10.1088/1361-648X/ab11b3
[5] St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017). doi: 10.1038/s41566-017-0006-2
[6] Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017). doi: 10.1126/science.aao4551
[7] Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018). doi: 10.1103/PhysRevLett.120.113901
[8] Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018). doi: 10.1126/science.aar4005
[9] Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018). doi: 10.1038/s41467-018-03434-2
[10] Ota, Y. et al. Topological photonic crystal nanocavity laser. Commun. Phys. 1, 86 (2018). doi: 10.1038/s42005-018-0083-7
[11] Han, C. et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array. Light Sci. Appl. 8, 40 (2019). doi: 10.1038/s41377-019-0149-7
[12] Smirnova, D. et al. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020). doi: 10.1063/1.5142397
[13] Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018). doi: 10.1038/s41467-018-03330-9
[14] Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018). doi: 10.1126/science.aaq0327
[15] Shalaev, M. I. et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019). doi: 10.1038/s41565-018-0297-6
[16] He, X. T. et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 10, 872 (2019). doi: 10.1038/s41467-019-08881-z
[17] Kruk, S. et al. Nonlinear light generation in topological nanostructures. Nat. Nanotechnol. 14, 126–130 (2019). doi: 10.1038/s41565-018-0324-7
[18] Smirnova, D. et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 123, 103901 (2019). doi: 10.1103/PhysRevLett.123.103901
[19] Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020). doi: 10.1038/s41565-019-0584-x
[20] Lin, R. H. et al. On-chip hyperuniform lasers for controllable transitions in disordered systems. Laser Photonics Rev. 14, 1800296 (2020). doi: 10.1002/lpor.201800296
[21] Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016). doi: 10.1088/1367-2630/18/2/025012
[22] Collins, M. J. et al. Integrated optical Dirac physics via inversion symmetry breaking. Phys. Rev. A 94, 063827 (2016). doi: 10.1103/PhysRevA.94.063827
[23] Chen, X. D. et al. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation. Phys. Rev. B 96, 020202 (2017). doi: 10.1103/PhysRevB.96.020202
[24] Wu, X. X. et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun. 8, 1304 (2017). doi: 10.1038/s41467-017-01515-2
[25] Noh, J. et al. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120, 063902 (2018). doi: 10.1103/PhysRevLett.120.063902
[26] Semenoff, G. W., Semenoff, V. & Zhou, F. Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008). doi: 10.1103/PhysRevLett.101.087204
[27] Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009). doi: 10.1103/PhysRevLett.102.096801
[28] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017). doi: 10.1126/science.aah6442
[29] Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018). doi: 10.1038/s41567-018-0246-1
[30] Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photonics 13, 692–696 (2019). doi: 10.1038/s41566-019-0452-0
[31] Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics 12, 408–415 (2018). doi: 10.1038/s41566-018-0179-3
[32] Ota, Y. et al. Photonic crystal nanocavity based on a topological corner state. Optica 6, 786–789 (2019). doi: 10.1364/OPTICA.6.000786
[33] Li, M. Y. et al. Higher-order topological states in photonic Kagome crystals with long-range interactions. Nat. Photonics 14, 89–94 (2020). doi: 10.1038/s41566-019-0561-9
[34] Zhong, H. et al. Topological valley Hall edge state lasing. arXiv 1912, 13003 (2019).
[35] Gong, Y. K. et al. Topological insulator laser using valley-Hall photonic crystals. arXiv 2001, 03661 (2020).
[36] Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020). doi: 10.1038/s41586-020-1981-x