[1] O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photonics 3, 687-695 (2009). doi: 10.1038/nphoton.2009.229
[2] Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: A concise review. Applied Physics Reviews 6, 041303 (2019). doi: 10.1063/1.5115814
[3] Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Reports on Progress in Physics 82, 016001 (2019). doi: 10.1088/1361-6633/aad5b2
[4] Clauser, J. F. & Shimony, A. Bell’s theorem. Experimental tests and implications. Reports on Progress in Physics 41, 1881-1927 (1978). doi: 10.1088/0034-4885/41/12/002
[5] Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575-579 (1997). doi: 10.1038/37539
[6] Gisin, N. & Thew, R. Quantum communication. Nature Photonics 1, 165-171 (2007). doi: 10.1038/nphoton.2007.22
[7] Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46-52 (2001). doi: 10.1038/35051009
[8] Liao, S. -K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43-47 (2017).
[9] Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140-1144 (2017). doi: 10.1126/science.aan3211
[10] Chen, Y. -A. et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres. Nature 589, 214-219 (2021).
[11] Joshi, S. K. et al. A trusted node–free eight-user metropolitan quantum communication network. Science Advances 6, eaba0959 (2020). doi: 10.1126/sciadv.aba0959
[12] Horne, M. A., Shimony, A. & Zeilinger, A. Two-particle interferometry. Physical Review Letters 62, 2209-2212 (1989). doi: 10.1103/PhysRevLett.62.2209
[13] Kwiat, P. G. et al. New High-Intensity Source of Polarization-Entangled Photon Pairs. Physical Review Letters 75, 4337-4341 (1995). doi: 10.1103/PhysRevLett.75.4337
[14] Zhong, H. -S. et al. 12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. Physical Review Letters 121, 250505 (2018).
[15] Malik, M. et al. Multi-photon entanglement in high dimensions. Nature Photonics 10, 248-252 (2016). doi: 10.1038/nphoton.2016.12
[16] Erhard, M. et al. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nature Photonics 12, 759-764 (2018). doi: 10.1038/s41566-018-0257-6
[17] Li, L. et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science 368, 1487-1490 (2020). doi: 10.1126/science.aba9779
[18] Zhong, H. -S. et al. Quantum computational advantage using photons. Science 370, 1460-1463 (2020).
[19] Chen, H. -T. , Taylor, A. J. & Yu, N. F. A review of metasurfaces: physics and applications. Reports on Progress in Physics 79, 076401 (2016).
[20] Yang, W. H. et al. Advanced manufacturing of dielectric meta-devices. Photonics Insights 3, R04 (2024). doi: 10.3788/PI.2024.R04
[21] Yao, J. et al. Integrated-resonant metadevices: a review. Advanced Photonics 5, 024001 (2023).
[22] Zhong, H. et al. Gigahertz-rate-switchable wavefront shaping through integration of metasurfaces with photonic integrated circuit. Advanced Photonics 6, 016005 (2024).
[23] Leng, B. R., Chen, M. K. & Tsai, D. P. Design, Fabrication, and Imaging of Meta-Devices. Acta Optica Sinica 43, 11 (2023).
[24] Leng, B. R. et al. Meta-device: advanced manufacturing. Light: Advanced Manufacturing 5, 117-132 (2024). doi: 10.37188/lam.2024.005
[25] Li, Q. W. et al. A non-unitary metasurface enables continuous control of quantum photon–photon interactions from bosonic to fermionic. Nature Photonics 15, 267-271 (2021). doi: 10.1038/s41566-021-00762-6
[26] Zhang, X. M. et al. Plasmonic photocatalysis. Reports on Progress in Physics 76, 046401 (2013). doi: 10.1088/0034-4885/76/4/046401
[27] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters 12, 6223-6229 (2012). doi: 10.1021/nl3032668
[28] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[29] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials 11, 426-431 (2012). doi: 10.1038/nmat3292
[30] Hsiao, H. H. et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Advanced Optical Materials 6, 1800031 (2018). doi: 10.1002/adom.201800031
[31] Koshelev, K. & Kivshar, Y. Dielectric Resonant Metaphotonics. ACS Photonics 8, 102-112 (2021).
[32] Ouyang, Y. H. et al. Singular dielectric nanolaser with atomic-scale field localization. Nature 632, 287-293 (2024). doi: 10.1038/s41586-024-07674-9
[33] Kwon, H. et al. Nonlocal Metasurfaces for Optical Signal Processing. Physical Review Letters 121, 173004 (2018). doi: 10.1103/PhysRevLett.121.173004
[34] Fan, Y. B. et al. Enhanced Multiphoton Processes in Perovskite Metasurfaces. Nano Letters 21, 7191-7197 (2021). doi: 10.1021/acs.nanolett.1c02074
[35] Fan, Y. B. et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nature Communications 10, 2085 (2019). doi: 10.1038/s41467-019-10090-7
[36] Yao, J. et al. Nonlocal meta-lens with Huygens' bound states in the continuum. Nature Communications 15, 6543 (2024). doi: 10.1038/s41467-024-50965-y
[37] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nature Nanotechnology 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[38] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nature Communications 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[39] Tame, M. S. et al. Quantum plasmonics. Nature Physics 9, 329-340 (2013). doi: 10.1038/nphys2615
[40] Liang, Y., Tsai, D. P. & Kivshar, Y. From Local to Nonlocal High-Q Plasmonic Metasurfaces. Physical Review Letters 133, 053801 (2024). doi: 10.1103/PhysRevLett.133.053801
[41] Wang, J. W. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285-291 (2018). doi: 10.1126/science.aar7053
[42] Santiago-Cruz, T. et al. Resonant metasurfaces for generating complex quantum states. Science 377, 991-995 (2022). doi: 10.1126/science.abq8684
[43] Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101-1104 (2018). doi: 10.1126/science.aat9042
[44] Zhang, J. H. et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Science Advances 8, eabq4240 (2022). doi: 10.1126/sciadv.abq4240
[45] Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241-244 (2014). doi: 10.1038/nature13188
[46] Huang, T. -Y. et al. A monolithic immersion metalens for imaging solid-state quantum emitters. Nature Communications 10, 2392 (2019).
[47] Fabre, C. & Treps, N. Modes and states in quantum optics. Reviews of Modern Physics 92, 035005 (2020). doi: 10.1103/RevModPhys.92.035005
[48] Burnham, D. C. & Weinberg, D. L. Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Physical Review Letters 25, 84-87 (1970). doi: 10.1103/PhysRevLett.25.84
[49] Chang, C. W. S. et al. Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity. Physical Review X 10, 011011 (2020).
[50] Basset, M. G. et al. Perspectives for Applications of Quantum Imaging. Laser & Photonics Reviews 13, 1900097 (2019).
[51] Walborn, S. P. et al. Spatial correlations in parametric down-conversion. Physics Reports 495, 87-139 (2010). doi: 10.1016/j.physrep.2010.06.003
[52] Hum, D. S. & Fejer, M. M. Quasi-phasematching. Comptes Rendus Physique 8, 180-198 (2007).
[53] Zhang, Z. S. et al. Entanglement-based quantum information technology: a tutorial. Advances in Optics and Photonics 16, 60-162 (2024). doi: 10.1364/AOP.497143
[54] Zhang, C. et al. Spontaneous Parametric Down-Conversion Sources for Multiphoton Experiments. Advanced Quantum Technologies 4, 2000132 (2021). doi: 10.1002/qute.202000132
[55] Marino, G. et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica 6, 1416-1422 (2019). doi: 10.1364/OPTICA.6.001416
[56] Santiago-Cruz, T. et al. Photon Pairs from Resonant Metasurfaces. Nano Letters 21, 4423-4429 (2021). doi: 10.1021/acs.nanolett.1c01125
[57] Jin, B. Y., Mishra, D. & Argyropoulos, C. J. N. Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces. Nanoscale 13, 19903-19914 (2021). doi: 10.1039/D1NR05379E
[58] Perry, M. et al. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces. Advanced Photonics 3, 055001 (2021).
[59] Son, C. et al. Photon pairs bi-directionally emitted from a resonant metasurface. Nanoscale 15, 2567-2572 (2023). doi: 10.1039/D2NR05499J
[60] Ma, J. Y. et al. Polarization Engineering of Entangled Photons from a Lithium Niobate Nonlinear Metasurface. Nano Letters 23, 8091-8098 (2023). doi: 10.1021/acs.nanolett.3c02055
[61] Weissflog, M. A. et al. Directionally tunable co- and counterpropagating photon pairs from a nonlinear metasurface. Nanophotonics 13, 3563-3573 (2024). doi: 10.1515/nanoph-2024-0122
[62] Semone, S. & Argyropoulos, C. Efficient sources of entangled single-photon pairs with nonlinear plasmonic metasurfaces. In 2024 United States National Committee of URSI National Radio Science Meeting. Boulder, United States: Institute of Electrical and Electronics Engineers Inc. , 2024, 192-193.
[63] Liu, T. et al. Efficient photon-pair generation empowered by dual quasibound states in the continuum. Physical Review B 109, 155424 (2024). doi: 10.1103/PhysRevB.109.155424
[64] Hsu, C. W. et al. Bound states in the continuum. Nature Reviews Materials 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48
[65] Meyer-Scott, E., Silberhorn, C. & Migdall, A. Single-photon sources: Approaching the ideal through multiplexing. Review of Scientific Instruments 91, 041101 (2020). doi: 10.1063/5.0003320
[66] Arakawa, Y. & Holmes, M. J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Applied Physics Reviews 7, 021309 (2020). doi: 10.1063/5.0010193
[67] Bozhevolnyi, S. I. & Khurgin, J. B. Fundamental limitations in spontaneous emission rate of single-photon sources. Optica 3, 1418-1421 (2016). doi: 10.1364/OPTICA.3.001418
[68] Tran, T. T. et al. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. Nano Letters 17, 2634-2639 (2017). doi: 10.1021/acs.nanolett.7b00444
[69] Kan, Y. H. et al. Metasurface-Enabled Generation of Circularly Polarized Single Photons. Advanced Materials 32, 1907832 (2020). doi: 10.1002/adma.201907832
[70] Kan, Y. H. et al. Directional off-Normal Photon Streaming from Hybrid Plasmon-Emitter Coupled Metasurfaces. ACS Photonics 7, 1111-1116 (2020). doi: 10.1021/acsphotonics.0c00196
[71] Komisar, D. et al. Generation of Radially Polarized Single Photons with Plasmonic Bullseye Antennas. ACS Photonics 8, 2190-2196 (2021). doi: 10.1021/acsphotonics.1c00459
[72] Kort-Kamp, W. J. M., Azad, A. K. & Dalvit, D. A. R. Space-Time Quantum Metasurfaces. Physical Review Letters 127, 043603 (2021). doi: 10.1103/PhysRevLett.127.043603
[73] Wu, C. et al. Room-temperature on-chip orbital angular momentum single-photon sources. Science Advances 8, eabk3075 (2022). doi: 10.1126/sciadv.abk3075
[74] Kan, Y. H. & Bozhevolnyi, S. I. Molding Photon Emission with Hybrid Plasmon-Emitter Coupled Metasurfaces. Advanced Optical Materials 10, 2102697 (2022). doi: 10.1002/adom.202102697
[75] Kan, Y. H. & Bozhevolnyi, S. I. Advances in Metaphotonics Empowered Single Photon Emission. Advanced Optical Materials 11, 2202759 (2023). doi: 10.1002/adom.202202759
[76] Iwanaga, M., Mano, T. & Ikeda, N. Superlinear Photoluminescence Dynamics in Plasmon–Quantum-Dot Coupling Systems. ACS Photonics 5, 897-906 (2018). doi: 10.1021/acsphotonics.7b01142
[77] Kumar, S. et al. Fluorescence enhancement of a single germanium vacancy center in a nanodiamond by a plasmonic Bragg cavity. The Journal of Chemical Physics 154, 044303 (2021). doi: 10.1063/5.0033507
[78] Staude, I. et al. Shaping Photoluminescence Spectra with Magnetoelectric Resonances in All-Dielectric Nanoparticles. ACS Photonics 2, 172-177 (2015). doi: 10.1021/ph500379p
[79] Yuan, S. et al. Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor. ACS Nano 11, 10704-10711 (2017). doi: 10.1021/acsnano.7b04810
[80] Liu, S. et al. Light-Emitting Metasurfaces: Simultaneous Control of Spontaneous Emission and Far-Field Radiation. Nano Letters 18, 6906-6914 (2018). doi: 10.1021/acs.nanolett.8b02808
[81] Prescott, S. et al. Mie metasurfaces for enhancing photon outcoupling from single embedded quantum emitters. Nanophotonics 14, 1917-1925 (2025). doi: 10.1515/nanoph-2024-0300
[82] Iyer, P. P. et al. Control of Quantized Spontaneous Emission from Single GaAs Quantum Dots Embedded in Huygens’ Metasurfaces. Nano Letters 24, 4749-4757 (2024).
[83] Sortino, L. et al. Optically addressable spin defects coupled to bound states in the continuum metasurfaces. Nature Communications 15, 2008 (2024). doi: 10.1038/s41467-024-46272-1
[84] Paniagua-Domínguez, R. et al. A Metalens with a Near-Unity Numerical Aperture. Nano Letters 18, 2124-2132 (2018). doi: 10.1021/acs.nanolett.8b00368
[85] Bao, Y. J. et al. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface. Science Advances 6, eaba8761 (2020). doi: 10.1126/sciadv.aba8761
[86] Li, C. et al. Arbitrarily structured quantum emission with a multifunctional metalens. eLight 3, 19 (2023). doi: 10.1186/s43593-023-00052-4
[87] Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187-195 (2021). doi: 10.1038/s41586-021-03581-5
[88] Pelgrin, V. et al. Hybrid integration of 2D materials for on-chip nonlinear photonics. Light: Advanced Manufacturing 4, 14 (2023).
[89] Qu, Y. et al. Integrated optical parametric amplifiers in silicon nitride waveguides incorporated with 2D graphene oxide films. Light: Advanced Manufacturing 4, 39 (2023).
[90] Ding, Y. F. et al. Second Harmonic Generation Covering the Entire Visible Range from a 2D Material–Plasmon Hybrid Metasurface. Advanced Optical Materials 9, 2100625 (2021). doi: 10.1002/adom.202100625
[91] Wu, P. C., Papasimakis, N. & Tsai, D. P. Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption. Physical Review Applied 6, 044019 (2016). doi: 10.1103/PhysRevApplied.6.044019
[92] Guo, Q. B. et al. Polarization entanglement enabled by orthogonally stacked van der Waals NbOCl2 crystals. Nature Communications 15, 10461 (2024). doi: 10.1038/s41467-024-54876-w
[93] Kallioniemi, L. et al. Van der Waals engineering for quantum-entangled photon generation. Nature Photonics 19, 142-148 (2025).
[94] Feng, J. G. et al. Polarization-entangled photon-pair source with van der Waals 3R-WS2 crystal. eLight 4, 16 (2024). doi: 10.1186/s43593-024-00074-6
[95] Liu, X. J. et al. On-chip generation of single-photon circularly polarized single-mode vortex beams. Science Advances 9, eadh0725 (2023). doi: 10.1126/sciadv.adh0725
[96] Kan, Y. H. et al. Multichannel Quantum Emission with On-Chip Emitter-Coupled Holographic Metasurfaces. ACS Nano 17, 20308-20314 (2023). doi: 10.1021/acsnano.3c06309
[97] Jia, S. T. et al. Multichannel Single-Photon Emissions with On-Demand Momentums by Using Anisotropic Quantum Metasurfaces. Advanced Materials 35, 2212244 (2023). doi: 10.1002/adma.202212244
[98] Dai, C. J. et al. Switchable unidirectional emissions from hydrogel gratings with integrated carbon quantum dots. Nature Communications 15, 845 (2024). doi: 10.1038/s41467-024-45284-1
[99] Fan, Y. B. et al. Metalens array for quantum random number. Applied Physics Reviews 11, 031418 (2024). doi: 10.1063/5.0224766
[100] Hong, C. -K. , Ou, Z. -Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters 59, 2044-2046 (1987).
[101] Bouchard, F. et al. Two-photon interference: the Hong-Ou-Mandel effect. Reports on Progress in Physics 84, 012402 (2021). doi: 10.1088/1361-6633/abcd7a
[102] Wang, S. M. et al. Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial. Optics Express 20, 5213-5218 (2012). doi: 10.1364/OE.20.005213
[103] Freulon, V. et al. Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization. Nature Communications 6, 6854 (2015). doi: 10.1038/ncomms7854
[104] Asano, M. et al. Distillation of photon entanglement using a plasmonic metamaterial. Scientific Reports 5, 18313 (2015). doi: 10.1038/srep18313
[105] Zhang, D. et al. All-optical modulation of quantum states by nonlinear metasurface. Light: Science & Applications 11, 58 (2022).
[106] Li, Z. -X. et al. High-dimensional entanglement generation based on a Pancharatnam–Berry phase metasurface. Photonics Research 10, 2702-2707 (2022).
[107] Gao, Y. -J. et al. Multichannel Distribution and Transformation of Entangled Photons with Dielectric Metasurfaces. Physical Review Letters 129, 023601 (2022).
[108] Zhu, L. X. et al. A dielectric metasurface optical chip for the generation of cold atoms. Science Advances 6, eabb6667 (2020). doi: 10.1126/sciadv.abb6667
[109] Georgi, P. et al. Metasurface interferometry toward quantum sensors. Light: Science & Applications 8, 70 (2019).
[110] Zhang, J. H. et al. Single-shot characterization of photon indistinguishability with dielectric metasurfaces. Optica 11, 753-758 (2024). doi: 10.1364/OPTICA.516064
[111] Gao, Z. J. et al. Metasurface for complete measurement of polarization Bell state. Nanophotonics 12, 569-577 (2023). doi: 10.1515/nanoph-2022-0593
[112] Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104-1108 (2018). doi: 10.1126/science.aat8196
[113] Lung, S. et al. Robust Classical and Quantum Polarimetry with a Single Nanostructured Metagrating. ACS Photonics 11, 1060-1067 (2024).
[114] Knight, M. W. et al. Photodetection with Active Optical Antennas. Science 332, 702-704 (2011). doi: 10.1126/science.1203056
[115] Ishikawa, A. & Tanaka, T. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers. Scientific Reports 5, 12570 (2015). doi: 10.1038/srep12570
[116] Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nature Communications 6, 7031 (2015). doi: 10.1038/ncomms8031
[117] Lyons, A. et al. Coherent metamaterial absorption of two-photon states with 40% efficiency. Physical Review A 99, 011801 (2019). doi: 10.1103/PhysRevA.99.011801
[118] Mitrofanov, O. et al. Perfectly absorbing dielectric metasurfaces for photodetection. APL Photonics 5, 101304 (2020). doi: 10.1063/5.0019883
[119] Lahiri, M. et al. Theory of quantum imaging with undetected photons. Physical Review A 92, 013832 (2015). doi: 10.1103/PhysRevA.92.013832
[120] Shapiro, J. H. & Boyd, R. W. The physics of ghost imaging. Quantum Information Processing 11, 949-993 (2012). doi: 10.1007/s11128-011-0356-5
[121] Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive Polarization Microscopy Using NOON States of Light. Physical Review Letters 112, 103604 (2014). doi: 10.1103/PhysRevLett.112.103604
[122] Taylor, M. A. et al. Subdiffraction-Limited Quantum Imaging within a Living Cell. Physical Review X 4, 011017 (2014).
[123] Fan, Y. B. et al. Dual-channel quantum meta-hologram for display. Advanced Photonics Nexus 3, 016011 (2024).
[124] Altuzarra, C. et al. Imaging of polarization-sensitive metasurfaces with quantum entanglement. Physical Review A 99, 020101 (2019).
[125] Liang, H. et al. Continuous heralding control of vortex beams using quantum metasurface. Communications Physics 6, 140 (2023). doi: 10.1038/s42005-023-01262-5
[126] Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photonics 5, 222-229 (2011). doi: 10.1038/nphoton.2011.35
[127] Afek, I., Ambar, O. & Silberberg, Y. High-NOON States by Mixing Quantum and Classical Light. Science 328, 879-881 (2010). doi: 10.1126/science.1188172
[128] Gupta, M. & Nene, M. J. Quantum computing: an entanglement measurement. 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Buldhana, India: IEEE, 2020, 1-6.
[129] Tanuwijaya, R. S. et al. Metasurface for programmable quantum algorithms with classical and quantum light. Nanophotonics 13, 927-936 (2024). doi: 10.1515/nanoph-2023-0844
[130] Yuan, Z. S. et al. Entangled photons and quantum communication. Physics Reports 497, 1-40 (2010). doi: 10.1016/j.physrep.2010.07.004
[131] Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Reviews of Modern Physics 86, 153-185 (2014). doi: 10.1103/RevModPhys.86.153
[132] Pirandola, S. et al. Advances in quantum cryptography. Advances in optics and photonics 12, 1012-1236 (2020). doi: 10.1364/AOP.361502
[133] Simon, C. Towards a global quantum network. Nature Photonics 11, 678-680 (2017). doi: 10.1038/s41566-017-0032-0
[134] Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics 10, 60-65 (2016). doi: 10.1038/nphoton.2015.247
[135] Zhang, Y. F. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology 16, 661-666 (2021). doi: 10.1038/s41565-021-00881-9
[136] Buchnev, O. et al. Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch. Advanced Optical Materials 3, 674-679 (2015). doi: 10.1002/adom.201400494
[137] Kang, D. et al. Liquid crystal-integrated metasurfaces for an active photonic platform. Opto-Electronic Advances 7, 230216 (2024). doi: 10.29026/oea.2024.230216
[138] Deng, Y. -H. et al. Colloidal quantum dots on macroscale perovskite single crystal with perfect lattice matching. Light: Advanced Manufacturing 6, 9 (2025).
[139] Sartison, M. et al. 3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light: Advanced Manufacturing 2, 6 (2021).