[1] Miyazawa, Y. et al. Evaluation of radiation tolerance of perovskite solar cell for use in space. Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). New Orleans, LA, USA: IEEE, 2015, 1-4.
[2] Miyazawa, Y. et al. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience 2 , 148-155 (2018).
[3] Brus, V. V. et al. Defect dynamics in proton irradiated CH3NH3PbI3 perovskite solar cells. Advanced Electronic Materials 3 , 1600438 (2017).
[4] Lang, F. et al. Radiation hardness and self-healing of perovskite solar cells. Advanced Materials 28 , 8726-8731 (2016).
[5] Sakhatskyi, K. & Kovalenko, M. V. Engineering stable perovskite X-ray detectors. Light: Science & Applications 11 , 271 (2022).
[6] García-Fernández, A. et al. Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces. Physical Chemistry Chemical Physics 26, 1000-1010 (2024). doi: 10.1039/D3CP05061K
[7] Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550 , 87-91 (2017).
[8] Milotti, V. et al. Degradation and self-healing of FAPbBr3 perovskite under soft-X-ray irradiation. Small Methods 7 , 2300222 (2023).
[9] Boldyreva, A. G. et al. Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. The Journal of Physical Chemistry Letters 11 , 2630-2636 (2020).
[10] Náfrádi, G. et al. Radiation detection and energy conversion in nuclear reactor environments by hybrid photovoltaic perovskites. Energy Conversion and Management 205 , 112423 (2020).
[11] Mahadik, P. et al. Effect of γ-irradiation on structure and properties of Nd3+ doped perovskite. Radiation Physics and Chemistry 139 , 152-156 (2017).
[12] Bannoob, W., Ali, S. M. & Aldawood, S. Influence of gamma rays on the electrical properties of CuPbI3 perovskite thin films. Radiation Physics and Chemistry 202, 110538 (2023). doi: 10.1016/j.radphyschem.2022.110538
[13] Kirmani, A. R. et al. Countdown to perovskite space launch: guidelines to performing relevant radiation-hardness experiments. Joule 6 , 1015-1031 (2022).
[14] Cardinaletti, I. et al. Organic and perovskite solar cells for space applications. Solar Energy Materials and Solar Cells 182 , 121-127 (2018).
[15] Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design 13 , 2722-2727 (2013).
[16] He, Y. H. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications 9 , 1609 (2018).
[17] Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics 10 , 585-589 (2016).
[18] Poizat, M. Radiation Environment and Its Effects in EEE Components and Hardness Assurance for Space Applications. (CERN - ESA - SSC WORKSHOP, 2017).
[19] Boldyreva, A. G. et al. Unraveling the impact of hole transport materials on photostability of perovskite films and p-i-n solar cells. ACS Applied Materials & Interfaces 12 , 19161-19173 (2020).
[20] Ozerova, V. V. et al. Exploring the limits: degradation behavior of lead halide perovskite films under exposure to ultrahigh doses of γ rays of up to 10 MGy. The Journal of Physical Chemistry Letters 14 , 743-749 (2023).
[21] Huang, K. Q. et al. γ-ray radiation on flexible perovskite solar cells. ACS Applied Energy Materials 3 , 7318-7324 (2020).
[22] Boldyreva, A. G. et al. γ-Ray-induced degradation in the triple-cation perovskite solar cells. The Journal of Physical Chemistry Letters 10 , 813-818 (2019).
[23] Gao, L. et al. Gamma-ray radiation stability of mixed-cation lead mixed-halide perovskite single crystals. Advanced Optical Materials 10, 2102069 (2022). doi: 10.1002/adom.202102069
[24] McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351 , 151-155 (2016).
[25] Chen, J. et al. A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites. Physical Chemistry Chemical Physics 25, 7574-7588 (2023). doi: 10.1039/D2CP05723A
[26] Kirchartz, T. et al. Photoluminescence-based characterization of halide perovskites for photovoltaics. Advanced Energy Materials 10, 1904134 (2020). doi: 10.1002/aenm.201904134
[27] Chen, J. et al. Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra. Photonics Research 9 , 151-170 (2021).
[28] Greul, E. et al. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A 5, 19972-19981 (2017). doi: 10.1039/C7TA06816F
[29] Bartusiak, M. F. & Becher, J. Proton-induced coloring of multicomponent glasses. Applied Optics 18, 3342-3346 (1979). doi: 10.1364/AO.18.003342
[30] Hebig, J. C. et al. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters 1, 309-314 (2016). doi: 10.1021/acsenergylett.6b00170
[31] Guerrero, A., Bisquert, J. & Garcia-Belmonte, G. Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chemical Reviews 121, 14430-14484 (2021). doi: 10.1021/acs.chemrev.1c00214
[32] Guerrero, A. et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. The Journal of Physical Chemistry C 120 , 8023-8032 (2016).
[33] Von Hauff, E. & Klotz, D. Impedance spectroscopy for perovskite solar cells: Characterisation, analysis, and diagnosis. Journal of Materials Chemistry C 10, 742-761 (2022). doi: 10.1039/D1TC04727B
[34] Boldyreva, A. G. et al. Gamma-ray dose threshold for MAPbI3 solar cells. Physical Chemistry Chemical Physics 26 , 12372-12378 (2024).
[35] Vasilev, A. A. et al. Deep-level transient spectroscopy of the charged defects in p-i-n perovskite solar cells induced by light-soaking. Optical Materials: X 16 , 100218 (2022).
[36] Lidiard, A. B. XCII. Impurity diffusion in polar crystals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 46, 815-823 (1955). doi: 10.1080/14786440808561233
[37] Tsarev, S. et al. Phenyl-C61-butyric acid as an interface passivation layer for highly efficient and stable perovskite solar cells. The Journal of Physical Chemistry C 124 , 1872-1877 (2020).
[38] Tepliakova, M. M. et al. Suzuki polycondensation for the synthesis of polytriarylamines: a method to improve hole-transport material performance in perovskite solar cells. Tetrahedron Letters 61, 152317 (2020). doi: 10.1016/j.tetlet.2020.152317