[1] Bouma, B. E. et al. Intravascular optical coherence tomography [Invited]. Biomed. Opt. Express 8, 2660–2686 (2017). doi: 10.1364/BOE.8.002660
[2] Gora, M. J. et al. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed. Opt. Express 8, 2405–2444 (2017). doi: 10.1364/BOE.8.002405
[3] Li, J. W. et al. Perspective: biomedical sensing and imaging with optical fibers—innovation through convergence of science disciplines. APL Photonics 3, 100902 (2018). doi: 10.1063/1.5040861
[4] Yamaguchi, T. et al. Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am. J. Cardiol. 101, 562–567 (2008). doi: 10.1016/j.amjcard.2007.09.116
[5] Swanson, E. A. & Fujimoto, J. G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. Biomed. Opt. Express 8, 1638–1664 (2017). doi: 10.1364/BOE.8.001638
[6] Hanna, N. et al. Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura. J. Thorac. Cardiovasc. Surg. 129, 615–622 (2005). doi: 10.1016/j.jtcvs.2004.10.022
[7] Tahara, S. et al. Intravascular optical coherence tomography detection of atherosclerosis and inflammation in murine aorta. Arterioscler. Thromb. Vasc. Biol. 32, 1150–1157 (2012). doi: 10.1161/ATVBAHA.111.243626
[8] Yuan, W. et al. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm. Nat. Commun. 8, 1531 (2017). doi: 10.1038/s41467-017-01494-4
[9] Scolaro, L. et al. High-sensitivity anastigmatic imaging needle for optical coherence tomography. Opt. Lett. 37, 5247–5249 (2012). doi: 10.1364/OL.37.005247
[10] Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018). doi: 10.1038/s41566-018-0224-2
[11] Kim, J. et al. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter. Opt. Lett. 42, 379–382 (2017). doi: 10.1364/OL.42.000379
[12] Yin, B. W. et al. Extended depth of focus for coherence-based cellular imaging. Optica 4, 959–965 (2017). doi: 10.1364/OPTICA.4.000959
[13] Htun, N. M. et al. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques. Nat. Commun. 8, 75 (2017). doi: 10.1038/s41467-017-00138-x
[14] Quirk, B. C. et al. In situ imaging of lung alveoli with an optical coherence tomography needle probe. J. Biomed. Opt. 16, 036009 (2011). doi: 10.1117/1.3556719
[15] Liu, L. B. et al. Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat. Med. 17, 1010–1014 (2011). doi: 10.1038/nm.2409
[16] Nishimura, S. et al. Cholesterol crystal as a new feature of coronary vulnerable plaques: an optical coherence tomography study. J. Cardiol. 69, 253–259 (2017). doi: 10.1016/j.jjcc.2016.04.003
[17] Luo, Y. M. et al. Imaging cellular structures of atherosclerotic coronary arteries using circumferentially scanning micro-optical coherence tomography fiber probe ex vivo. IEEE Access 6, 62988–62994 (2018). doi: 10.1109/ACCESS.2018.2876919
[18] Benalcazar, W. A., Jung, W. & Boppart, S. A. Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters. Opt. Lett. 37, 1100–1102 (2012). doi: 10.1364/OL.37.001100
[19] Tan, K. M. et al. Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance. Biomed. Opt. Express 3, 1947–1954 (2012). doi: 10.1364/BOE.3.001947
[20] Lorenser, D. et al. Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett. 36, 3894–3896 (2011). doi: 10.1364/OL.36.003894
[21] Malinauskas, M. et al. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep. 533, 1–31 (2013). doi: 10.1016/j.physrep.2013.07.005
[22] Von Freymann, G. et al. Three‐dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010). doi: 10.1002/adfm.200901838
[23] Sun, H. B. & Kawata, S. Two-photon photopolymerization and 3D lithographic microfabrication. in NMR• 3D Analysis• Photopolymerization (Fatkullin, N. eds et al.) 169–273 (Berlin, Heidelberg: Springer, 2004).
[24] Lightman, S. et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 4, 605–610 (2017). doi: 10.1364/OPTICA.4.000605
[25] Malinauskas, M. et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. J. Opt. 12, 124010 (2010). doi: 10.1088/2040-8978/12/12/124010
[26] Lightman, S. et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals. Opt. Lett. 40, 4460–4463 (2015). doi: 10.1364/OL.40.004460
[27] Wu, D. et al. High numerical aperture microlens arrays of close packing. Appl. Phys. Lett. 97, 031109 (2010). doi: 10.1063/1.3464979
[28] Li, J. et al. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Sci. Rep. 8, 14789 (2018). doi: 10.1038/s41598-018-32407-0
[29] Lorenser, D., Yang, X. J. & Sampson, D. D. Ultrathin fiber probes with extended depth of focus for optical coherence tomography. Opt. Lett. 37, 1616–1618 (2012). doi: 10.1364/OL.37.001616
[30] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554–560 (2016). doi: 10.1038/nphoton.2016.121
[31] Narula, J. & Strauss, H. W. The popcorn plaques. Nat. Med. 13, 532–534 (2007). doi: 10.1038/nm0507-532
[32] Robinson, S. T. & Taylor, W. R. Beyond the adventitia: exploring the outer limits of the blood vessel wall. Circ. Res. 104, 416–418 (2009). doi: 10.1161/CIRCRESAHA.109.194225
[33] Fleg, J. L. et al. Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc Imag. 5, 941–955 (2012). doi: 10.1016/j.jcmg.2012.07.007
[34] Abela, G. S. et al. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am. J. Cardiol. 103, 959–968 (2009). doi: 10.1016/j.amjcard.2008.12.019
[35] Gissibl, T., Schmid, M. & Giessen, H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3, 448–451 (2016). doi: 10.1364/OPTICA.3.000448
[36] Gounis, M. J. et al. Intravascular optical coherence tomography for neurointerventional surgery. Stroke 50, 218–223 (2019). doi: 10.1161/STROKEAHA.118.022315
[37] Mathews, M. S. et al. Neuroendovascular optical coherence tomography imaging and histological analysis. Neurosurgery 69, 430–439 (2011). doi: 10.1227/NEU.0b013e318212bcb4
[38] Tearney, G. J. et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59, 1058–1072 (2012). doi: 10.1016/j.jacc.2011.09.079
[39] van Soest, G. et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J. Biomed. Opt. 15, 011105 (2010). doi: 10.1117/1.3280271
[40] Roberts, A. M. & Grimes, A. L. Enlargement of internal carotid artery aneurysm presenting with severe visual sequela: a case report and anatomy review. Optom. J. Am. Optometric Assoc. 80, 76–82 (2009). doi: 10.1016/j.optm.2008.05.009
[41] Hariri, L. P. et al. In vivo optical coherence tomography: the role of the pathologist. Arch. Pathol. Lab. Med. 136, 1492–1501 (2012).
[42] Iyer, J. S. et al. Micro-optical coherence tomography of the mammalian cochlea. Sci. Rep. 6, 33288 (2016). doi: 10.1038/srep33288
[43] Akhoundi, F. et al. Compact fiber-based multi-photon endoscope working at 1700 nm. Biomed. Opt. Express 9, 2326–2335 (2018). doi: 10.1364/BOE.9.002326
[44] Zhao, Y. et al. Design of a fiber-optic multiphoton microscopy handheld probe. Biomed. Opt. Express 7, 3425–3437 (2016). doi: 10.1364/BOE.7.003425
[45] Wang, W. et al. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography. Opt. Express 27, 358–366 (2019). doi: 10.1364/OE.27.000358
[46] Tan, K. M. et al. In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt. Express 17, 2375–2384 (2009). doi: 10.1364/OE.17.002375
[47] Kowalczyk, M., Haberko, J. & Wasylczyk, P. Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing. Opt. Express 22, 12545–12550 (2014). doi: 10.1364/OE.22.012545
[48] Mayer, F. et al. Multimaterial 3D laser microprinting using an integrated microfluidic system. Sci. Adv. 5, eaau9160 (2019). doi: 10.1126/sciadv.aau9160
[49] Gießen, H., Thiel, M. & Gissibl, T. Method and device for producing microstructures on optical fibers. WO2017059960A1WIPO (PCT) (2018).
[50] Gissibl, T. 3D printing of sub-micrometer accurate ultra-compact free-form optics, PhD Dissertation, University of Stuttgart (2016).
[51] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 11763 (2016). doi: 10.1038/ncomms11763
[52] Schmid, M., Ludescher, D. & Giessen, H. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Express 9, 4564–4577 (2019). doi: 10.1364/OME.9.004564