[1] Lahiri, B. B. et al. Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55, 221–235 (2012). doi: 10.1016/j.infrared.2012.03.007
[2] Bagavathiappan, S. et al. Infrared thermography for condition monitoring—a review. Infrared Phys. Technol. 60, 35–55 (2013). doi: 10.1016/j.infrared.2013.03.006
[3] Xiao, Y. Z. et al. Precision measurements of temperature-dependent and nonequilibrium thermal emitters. Laser Photonics Rev. 14, 1900443 (2020). doi: 10.1002/lpor.201900443
[4] Brites, C. D. S. et al. Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012). doi: 10.1039/c2nr30663h
[5] Jaque, D. & Vetrone, F. Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012). doi: 10.1039/c2nr30764b
[6] Dramićanin, M. Luminescence Thermometry: Methods, Materials, and Applications (Woodhead Publishing, 2018).
[7] Allison, S. W. & Gillies, G. T. Remote thermometry with thermographic phosphors: instrumentation and applications. Rev. Sci. Instrum. 68, 2615–2650 (1997). doi: 10.1063/1.1148174
[8] Allison, S. W. et al. Nanoscale thermometry via the fluorescence of YAG: Ce phosphor particles: measurements from 7 to 77 ℃. Nanotechnology 14, 859–863 (2003). doi: 10.1088/0957-4484/14/8/304
[9] Allison, S. W. A brief history of phosphor thermometry. Meas. Sci. Technol. 30, 072001 (2019). doi: 10.1088/1361-6501/ab1d02
[10] Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). doi: 10.1038/nature12373
[11] Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013). doi: 10.1021/nl401216y
[12] Wang, N. et al. Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions. Phys. Rev. X 8, 011042 (2018). http://www.onacademic.com/detail/journal_1000040242708810_c6d9.html
[13] Walker, G. W. et al. Quantum-dot optical temperature probes. Appl. Phys. Lett. 83, 3555–3557 (2003). doi: 10.1063/1.1620686
[14] Ortega-Rodríguez, A. et al. 10-fold quantum yield improvement of Ag2S nanoparticles by fine compositional tuning. ACS Appl. Mater. Interfaces 12, 12500–12509 (2020). doi: 10.1021/acsami.9b22827
[15] Santos, H. D. A. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat. Commun. 11, 2933 (2020). doi: 10.1038/s41467-020-16333-2
[16] Yakunin, S. et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. Nat. Mater. 18, 846–852 (2019). doi: 10.1038/s41563-019-0416-2
[17] Morad, V. et al. Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography. Adv. Mater. 33, 2007355 (2021). doi: 10.1002/adma.202007355
[18] Gota, C. et al. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 131, 2766–2767 (2009). doi: 10.1021/ja807714j
[19] Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012). doi: 10.1038/ncomms1714
[20] Sakaguchi, R., Kiyonaka, S. & Mori, Y. Fluorescent sensors reveal subcellular thermal changes. Curr. Opin. Biotechnol. 31, 57–64 (2015). doi: 10.1016/j.copbio.2014.07.013
[21] Uchiyama, S. & Gota, C. Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature. Rev. Anal. Chem. 36, 20160021 (2017). http://www.degruyter.com/view/j/revac.2017.36.issue-1/revac-2016-0021/revac-2016-0021.xml?format=INT
[22] Brites, C. D. S., Millán, A. & Carlos, L. D. Lanthanides in luminescent thermometry. Handb. Phys. Chem. Rare Earths 49, 339–427 (2016). http://www.researchgate.net/profile/A_Millan/publication/303912585_Lanthanides_in_Luminescent_Thermometry/links/5763cf1008ae421c447f3cf2.pdf
[23] Brites, C. D. S., Balabhadra, S. & Carlos, L. D. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 7, 1801239 (2019). doi: 10.1002/adom.201801239
[24] Souza, A. S. et al. Highly-sensitive Eu3+ ratiometric thermometers based on excited state absorption with predictable calibration. Nanoscale 8, 5327–5333 (2016). doi: 10.1039/C6NR00158K
[25] Trejgis, K., Bednarkiewicz, A. & Marciniak, L. Engineering excited state absorption-based nanothermometry for temperature sensing and imaging. Nanoscale 12, 4667–4675 (2020). doi: 10.1039/C9NR09740F
[26] Trejgis, K. et al. Nd3+ doped TZPN glasses for NIR operating single band ratiometric approach of contactless temperature readout. J. Lumin. 224, 117295 (2020). doi: 10.1016/j.jlumin.2020.117295
[27] Brites, C. D. S. et al. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nat. Nanotechnol. 11, 851–856 (2016). doi: 10.1038/nnano.2016.111
[28] Bastos, A. et al. Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Funct. Mater. 29, 1905474 (2019). doi: 10.1002/adfm.201905474
[29] Caixeta, F. J. et al. High-quantum-yield upconverting Er3+/Yb3+-organic–inorganic hybrid dual coatings for real-time temperature sensing and photothermal conversion. J. Phys. Chem. C 124, 19892–19903 (2020). doi: 10.1021/acs.jpcc.0c03874
[30] del Rosal, B. et al. Nd3+ ions in nanomedicine: perspectives and applications. Optical Mater. 63, 185–196 (2017). doi: 10.1016/j.optmat.2016.06.004
[31] del Rosal, B. et al. In vivo luminescence nanothermometry: from materials to applications. Adv. Opt. Mater. 5, 1600508 (2017). doi: 10.1002/adom.201600508
[32] Piñol, R. et al. Real-time intracellular temperature imaging using lanthanide-bearing polymeric micelles. Nano Lett. 20, 6466–6472 (2020). doi: 10.1021/acs.nanolett.0c02163
[33] Ximendes, E. C. et al. Thulium doped LaF3 for nanothermometry operating over 1000 nm. Nanoscale 11, 8864–8869 (2019). doi: 10.1039/C9NR00082H
[34] Skripka, A. et al. Advancing neodymium single-band nanothermometry. Nanoscale 11, 11322–11330 (2019). doi: 10.1039/C9NR02801C
[35] Hazra, C. et al. Erbium single-band nanothermometry in the third biological imaging window: potential and limitations. Adv. Opt. Mater. 8, 2001178 (2020). doi: 10.1002/adom.202001178
[36] Geitenbeek, R. G. et al. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions. ACS Catal. 8, 2397–2401 (2018). doi: 10.1021/acscatal.7b04154
[37] van Ravenhorst, I. K. et al. In situ local temperature mapping in microscopy nano-reactors with luminescence thermometry. ChemCatChem 11, 5505–5512 (2019). doi: 10.1002/cctc.201900985
[38] Hartman, T. et al. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019). doi: 10.1038/s41929-019-0352-1
[39] Geitenbeek, R. G. et al. Luminescence thermometry for in situ temperature measurements in microfluidic devices. Lab Chip 19, 1236–1246 (2109). http://www.onacademic.com/detail/journal_1000041603200899_3355.html
[40] Hartman, T. et al. Operando nanoscale sensors in catalysis: all eyes on catalyst particles. ACS Nano 14, 3725–3735 (2020). doi: 10.1021/acsnano.9b09834
[41] Bednarkiewicz, A. et al. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 12, 14405–14421 (2020). doi: 10.1039/D0NR03568H
[42] Dramićanin, M. D. Trends in luminescence thermometry. J. Appl. Phys. 128, 040902 (2020). doi: 10.1063/5.0014825
[43] Bednarkiewicz, A. et al. Luminescence based temperature bio-imaging: status, challenges, and perspectives. Appl. Phys. Rev. 8, 011317 (2021). doi: 10.1063/5.0030295
[44] Ximendes, E. et al. Quo vadis, nanoparticle-enabled in vivo fluorescence imaging? ACS Nano 15, 1917–1941 (2021). doi: 10.1021/acsnano.0c08349
[45] van Swieten, T. P. et al. Mapping elevated temperatures with a micrometer resolution using the luminescence of chemically stable upconversion nanoparticles. ACS Appl. Nano Mater. 4, 4208–4215 (2021). doi: 10.1021/acsanm.1c00657
[46] Labrador-Páez, L. et al. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale 10, 22319–22328 (2018). doi: 10.1039/C8NR07566B
[47] Shen, Y. L. et al. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano 14, 4122–4133 (2020). doi: 10.1021/acsnano.9b08824
[48] Errulat, D. et al. A luminescent thermometer exhibiting slow relaxation of the magnetization: toward self-monitored building blocks for next-generation optomagnetic devices. ACS Cent. Sci. 5, 1187–1198 (2019). doi: 10.1021/acscentsci.9b00288
[49] Gálico, D. A. et al. Triplet-state position and crystal-field tuning in opto-magnetic lanthanide complexes: two sides of the same coin. Chem. A Eur. J. 25, 14625–14637 (2019). doi: 10.1002/chem.201902837
[50] Kaczmarek, A. M. et al. Developing luminescent ratiometric thermometers based on a covalent organic framework (COF). Angew. Chem. Int. Ed. 59, 1932–1940 (2020). doi: 10.1002/anie.201913983
[51] Gomez, G. E. et al. Tunable energy-transfer process in heterometallic MOF materials based on 2, 6-naphthalenedicarboxylate: solid-state lighting and near-infrared luminescence thermometry. Chem. Mater. 32, 7458–7468 (2020). doi: 10.1021/acs.chemmater.0c02480
[52] Kaczmarek, A. M. et al. Visible and NIR upconverting Er3+−Yb3+ luminescent nanorattles and other hybrid PMO-inorganic structures for in vivo nanothermometry. Adv. Funct. Mater. 30, 2003101 (2020). doi: 10.1002/adfm.202003101
[53] Geitenbeek, R. G., de Wijn, H. W. & Meijerink, A. Non-Boltzmann luminescence in NaYF4: Eu3+: implications for luminescence thermometry. Phys. Rev. Appl. 10, 064006 (2018). doi: 10.1103/PhysRevApplied.10.064006
[54] Suta, M. et al. Making Nd3+ a sensitive luminescent thermometer for physiological temperatures—an account of pitfalls in Boltzmann thermometry. Nanomaterials 10, 543 (2020). doi: 10.3390/nano10030543
[55] Suta, M. & Meijerink, A. A theoretical framework for ratiometric single ion luminescent thermometers—thermodynamic and kinetic guidelines for optimized performance. Adv. Theory Simul. 3, 2000176 (2020). doi: 10.1002/adts.202000176
[56] Tian, X. N. et al. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+. Opt. Express 22, 30333–30345 (2014). doi: 10.1364/OE.22.030333
[57] Ćirić, A. et al. Comparison of three ratiometric temperature readings from the Er3+ upconversion emission. Nanomaterials 10, 627 (2020). doi: 10.3390/nano10040627
[58] Li, L. P. Three-energy-level-cascaded strategy for a more sensitive luminescence ratiometric thermometry. Sens. Actuators A: Phys. 304, 111864 (2020). doi: 10.1016/j.sna.2020.111864
[59] Belokoneva, E. L. et al. The crystal structure of YAl3(BO3)4. Zh. Strukturnoi Khimii 22, 196–198 (1981).
[60] Hu, C. H. et al. Visible-to-ultraviolet upconversion in Pr3+: Y2SiO5 crystals. Chem. Phys. 325, 563–566 (2006). doi: 10.1016/j.chemphys.2006.01.037
[61] Cates, E. L. & Kim, J. H. Upconversion under polychromatic excitation: Y2SiO5: Pr3+, Li+ converts violet, cyan, green, and yellow light into UVC. Optical Mater. 35, 2347–2351 (2013). doi: 10.1016/j.optmat.2013.06.030
[62] Cates, E. L., Wilkinson, A. P. & Kim, J. H. Visible-to-UVC upconversion efficiency and mechanisms of Lu7O6F9: Pr3+ and Y2SiO5: Pr3+ ceramics. J. Lumin. 160, 202–209 (2015). doi: 10.1016/j.jlumin.2014.11.049
[63] Cates, E. L. & Li, F. F. Balancing intermediate state decay rates for efficient Pr3+ visible-to-UVC upconversion: the case of β-Y2Si2O7: Pr3+. RSC Adv. 6, 22791–22796 (2016). doi: 10.1039/C6RA01121G
[64] Du, Y. Y. et al. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals. Adv. Opt. Mater. 8, 1900968 (2020). doi: 10.1002/adom.201900968
[65] Sahu, S. P. et al. The myth of visible light photocatalysis using lanthanide upconversion materials. Environ. Sci. Technol. 52, 2973–2980 (2018). doi: 10.1021/acs.est.7b05941
[66] Harada, N. et al. Discovery of Key TIPS-naphthalene for efficient visible-to-UV photon upconversion under sunlight and room light. Angew. Chem. Int. Ed. 60, 142–147 (2021). doi: 10.1002/anie.202012419
[67] Back, M. et al. Effective ratiometric luminescent thermal sensor by Cr3+-doped mullite Bi2Al4O9 with robust and reliable performances. Adv. Optical Mater. 8, 2000124 (2020). doi: 10.1002/adom.202000124
[68] Back, M. et al. Pushing the limit of Boltzmann distribution in Cr3+-doped CaHfO3 for cryogenic thermometry. ACS Appl. Mater. Interfaces 12, 38325–38332 (2020). doi: 10.1021/acsami.0c08965
[69] Mykhaylyk, V. et al. Multimodal non-contact luminescence thermometry with Cr-doped oxides. Sensors 20, 5259 (2020). doi: 10.3390/s20185259
[70] Sytsma, J., Imbusch, G. F. & Blasse, G. The spectroscopy of Gd3+ in yttriumoxychloride: Judd–Ofelt parameters from emission data. J. Chem. Phys. 91, 1456–1461 (1989). doi: 10.1063/1.457106
[71] Sytsma, J. & Blasse, G. Comparison of the emission of Eu2+ in MFCl (M = Sr, Ba) and Gd3+ in YOCl. J. Lumin. 51, 283–292 (1992). doi: 10.1016/0022-2313(92)90079-O
[72] Bartl, M. H. et al. Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 57, 1981–1990 (2001). doi: 10.1016/S1386-1425(01)00484-X
[73] de Vries, A. J. & Blasse, G. On the possibility to sensitize Gd3+ luminescence by the Pr3+ ion. Mater. Res. Bull. 21, 683–694 (1986). doi: 10.1016/0025-5408(86)90146-7
[74] Balabhadra, S. et al. Upconverting nanoparticles working as primary thermometers in different media. J. Phys. Chem. C 121, 13962–13968 (2017). doi: 10.1021/acs.jpcc.7b04827
[75] Sytsma, J. et al. Spectroscopic studies and crystal-field analysis of Cm3+ and Gd3+ in LuPO4. Phys. Rev. B 52, 12668–12676 (1995). doi: 10.1103/PhysRevB.52.12668
[76] Riseberg, L. A. & Moos, H. W. Multiphonon orbit-lattice relaxation in LaBr3, LaCl3, and LaF3. Phys. Rev. Lett. 19, 1423–1426 (1967). doi: 10.1103/PhysRevLett.19.1423
[77] Riseberg, L. A. & Moos, H. W. Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals. Phys. Rev. J. Arch. 174, 429–438 (1968). doi: 10.1103/PhysRev.174.429
[78] Back, M. et al. Boltzmann thermometry in Cr3+-doped Ga2O3 polymorphs: the structure matters! Adv. Opt. Mater. 9, 2100033 (2021). doi: 10.1002/adom.202100033
[79] Liu, X. et al. Mixed-lanthanoid metal-organic framework for ratiometric cryogenic temperature sensing. Inorg. Chem. 54, 11323–11329 (2015). doi: 10.1021/acs.inorgchem.5b01924
[80] Ananias, D. et al. Near-infrared ratiometric luminescent thermometer based on a new lanthanide silicate. Chem. A Eur. J. 24, 11926–11935 (2018). doi: 10.1002/chem.201802219
[81] Abram, C. et al. ScVO4: Bi3+ thermographic phosphor particles for fluid temperature imaging with sub-℃ precision. Opt. Lett. 45, 3893–3896 (2020). doi: 10.1364/OL.392088
[82] Detrio, J. A. Line strengths for Gd3+ at a C4v site in SrF2. Phys. Rev. B 4, 1422–1427 (1971). doi: 10.1103/PhysRevB.4.1422
[83] Yu, D. C. et al. Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple. Light. : Sci. Appl. 9, 107 (2020). doi: 10.1038/s41377-020-00346-z