| [1] | Jia, X. S. et al. Ultrafast laser welding of transparent materials: from principles to applications. International Journal of Extreme Manufacturing 7, 032001 (2025). doi: 10.1088/2631-7990/ada7a7 |
| [2] | Zimmermann, F. et al. Welding with ultrashort laser pulses: recent developments at TRUMPF. Laser Applications in Microelectronic and Optoelectronic Manufacturing. SPIE, 11673 (2021). |
| [3] | Penilla, E. H. et al. Ultrafast laser welding of ceramics. Science 365, 803-808 (2019). doi: 10.1126/science.aaw6699 |
| [4] | Lafon, R. E. et al. Ultrafast laser bonding of glasses and crystals to metals for epoxy-free optical instruments. Components and Packaging for Laser Systems. San Francisco, California, USA: SPIE, 2020. |
| [5] | Jin, J. et al. High-strength and crack-free welding of 2024 aluminium alloy via Zr-core-Al-shell wire. Nature Communications 15, 1748 (2024). doi: 10.1038/s41467-024-45660-x |
| [6] | Lai, Z. H. et al. Unveiling mechanisms and onset threshold of humping in high-speed laser welding. Nature Communications 15, 9546 (2024). doi: 10.1038/s41467-024-53888-w |
| [7] | He, L. Z. et al. Research advances in joining processes of sapphire. The International Journal of Advanced Manufacturing Technology 121, 59-81 (2022). doi: 10.1007/s00170-022-09199-9 |
| [8] | Sopeña, P. et al. Transmission laser welding of similar and dissimilar semiconductor materials. Laser & Photonics Reviews 16, 2200208 (2022). |
| [9] | Chambonneau, M. et al. Taming ultrafast laser filaments for optimized semiconductor–metal welding. Laser & Photonics Reviews 15, 2000433 (2021). |
| [10] | Tan, D. Z., Zhang, B. & Qiu, J. R. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser & Photonics Reviews 15, 2000455 (2021). |
| [11] | Tian, C. Y., Ren, H. D. & Shen, H. The connection of glass and metal with a large gap by combining laser soldering and ultrafast laser welding. Journal of Manufacturing Processes 102, 528-534 (2023). doi: 10.1016/j.jmapro.2023.07.065 |
| [12] | Zhang, L. et al. Glass to aluminum joining by forming a mechanical pin structure using femtosecond laser. Journal of Materials Processing Technology 302, 117504 (2022). doi: 10.1016/j.jmatprotec.2022.117504 |
| [13] | Yuan, H. et al. Direct welding of diffuse alumina ceramics by ultrashort pulse laser. Journal of the European Ceramic Society 44, 574-578 (2024). doi: 10.1016/j.jeurceramsoc.2023.08.034 |
| [14] | Zhao, M. et al. A 3D nanoscale optical disk memory with petabit capacity. Nature 626, 772-778 (2024). doi: 10.1038/s41586-023-06980-y |
| [15] | Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307-310 (2022). doi: 10.1126/science.abj2691 |
| [16] | Pan, R. et al. Micro-welding of sapphire and metal by femtosecond laser. Ceramics International 49, 21384-21392 (2023). doi: 10.1016/j.ceramint.2023.03.267 |
| [17] | Yuan, J. H. et al. Microcrackless weld formation under unilateral melting in laser transmission welding of sapphire and stainless steel. Journal of Manufacturing Processes 141, 897-905 (2025). doi: 10.1016/j.jmapro.2025.02.087 |
| [18] | Li, X. et al. Effect of pulse energy on the microstructure and mechanical properties of the non-optical contact femtosecond laser welding of quartz glass and the TC4 alloy. Metals 15, 159 (2025). doi: 10.3390/met15020159 |
| [19] | Zhang, L. et al. The characteristics and dynamics of fused silica-aluminum alloy welding during mJ-level femtosecond laser. Materials & Design 239, 112790 (2024). |
| [20] | Zhang, J. J. et al. The effect of gap on the quality of glass-to-glass welding using a picosecond laser. Optics and Lasers in Engineering 134, 106248 (2020). doi: 10.1016/j.optlaseng.2020.106248 |
| [21] | Hecker, S., Scharun, M. & Graf, T. Process monitoring based on plasma emission for power-modulated glass welding with bursts of subpicosecond laser pulses. Applied Optics 60, 3526-3534 (2021). doi: 10.1364/AO.420037 |
| [22] | Huo, J. Y. et al. Welding between rough copper foil and silica glass using green femtosecond laser. Optics & Laser Technology 181, 111804 (2025). |
| [23] | Tian, C. Y. & Shen, H. Thermo-fluid coupled model based on laser energy deposition for high-repetition rate ultrafast laser welding of glass and metal. International Journal of Heat and Mass Transfer 247, 127211 (2025). doi: 10.1016/j.ijheatmasstransfer.2025.127211 |
| [24] | Richter, S. et al. Toward laser welding of glasses without optical contacting. Applied Physics A 121, 1-9 (2015). |
| [25] | Yang, Z. Y. et al. Welding threshold in ultrafast laser welding of quartz glass and 304 stainless steel. Optics & Laser Technology 181, 111622 (2025). |
| [26] | Matsuyoshi, S. et al. Welding of glass and copper with a rough surface using femtosecond fiber laser pulses. Journal of Laser Micro/Nanoengineering 13, 21-25 (2018). doi: 10.2961/jlmn.2018.01.0005 |
| [27] | Zhang, L. et al. Enhanced joint through significant diffusion and molten pool regions in fused silica to aluminum alloy welding by femtosecond mJ-pulses. The International Journal of Advanced Manufacturing Technology 129, 601-610 (2023). doi: 10.1007/s00170-023-12325-w |
| [28] | Yuan, H. et al. Ultrashort pulse laser welding of alumina ceramic and titanium. Journal of the European Ceramic Society 44, 3393-3399 (2024). doi: 10.1016/j.jeurceramsoc.2023.12.047 |
| [29] | Chen, C. J. et al. Enhancing the laser sealing of borosilicate glass/Kovar alloy joint via picosecond laser welding at varying power levels. Journal of Laser Applications 37, 032006 (2025). doi: 10.2351/7.0001697 |
| [30] | Jia, X. S. et al. Burst ultrafast laser welding of quartz glass. Materials 18, 1169 (2025). doi: 10.3390/ma18051169 |
| [31] | Shen, H. et al. High welding strength of fused silica and stainless steel by picosecond laser with large defocus. Ceramics International 51, 18154-18165 (2025). doi: 10.1016/j.ceramint.2025.01.590 |
| [32] | Lian, Y. L. et al. Ultrafast quasi-three-dimensional imaging. International Journal of Extreme Manufacturing 5, 045601 (2023). doi: 10.1088/2631-7990/ace944 |
| [33] | Tang, H. C. et al. Single-shot compressed optical field topography. Light: Science & Applications 11, 244 (2022). |
| [34] | Lin, Z. Y. et al. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption. Opto-Electronic Advances 6, 230029 (2023). doi: 10.29026/oea.2023.230029 |
| [35] | Zhang, B. et al. Focal volume optics for composite structuring in transparent solids. International Journal of Extreme Manufacturing 7, 015002 (2025). doi: 10.1088/2631-7990/ad8712 |
| [36] | Li, J. et al. Laser-guided anisotropic etching for precision machining of micro-engineered glass components. International Journal of Machine Tools and Manufacture 198, 104152 (2024). doi: 10.1016/j.ijmachtools.2024.104152 |
| [37] | Han, R. Z. et al. Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces. Opto-Electronic Science 3, 230013 (2024). doi: 10.29026/oes.2024.230013 |
| [38] | Gao, Z. et al. Ultrahigh transmittance biomimetic fused quartz windows enabled by frequency-doubling femtosecond laser processing. ACS Applied Materials & Interfaces 17, 43944-43956 (2025). |
| [39] | Zhan, J. et al. Mechanism and optimization of femtosecond laser welding fused silica and aluminum. Applied Surface Science 640, 158327 (2023). doi: 10.1016/j.apsusc.2023.158327 |
| [40] | Hecker, S. et al. Process regimes during welding of glass by femtosecond laser pulse bursts. Applied Optics 59, 6452-6458 (2020). doi: 10.1364/AO.392702 |
| [41] | Balage, P. et al. Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts. International Journal of Extreme Manufacturing 5, 015002 (2023). doi: 10.1088/2631-7990/acaa14 |
| [42] | Obata, K. et al. GHz bursts in MHz burst (BiBurst) enabling high-speed femtosecond laser ablation of silicon due to prevention of air ionization. International Journal of Extreme Manufacturing 5, 025002 (2023). doi: 10.1088/2631-7990/acc0e5 |
| [43] | Ren, H. D., Tian, C. Y. & Shen, H. Ultrafast laser bursts welding glass and metal with solder paste to create an ultra-large molten pool. Optics Letters 49, 1717-1720 (2024). doi: 10.1364/OL.520150 |
| [44] | Park, M. et al. Mechanisms of ultrafast GHz burst fs laser ablation. Science Advances 9, eadf6397 (2023). doi: 10.1126/sciadv.adf6397 |
| [45] | Polyakov, D. S. et al. Nanosecond laser ablation in confined mode of vapor/plasma plume expansion for metal films transfer: theoretical and experimental investigation. International Journal of Heat and Mass Transfer 251, 127379 (2025). doi: 10.1016/j.ijheatmasstransfer.2025.127379 |
| [46] | Hecker, S., Blothe, M. & Graf, T. Reproducible process regimes during glass welding by bursts of subpicosecond laser pulses. Applied Optics 59, 11382-11388 (2020). doi: 10.1364/AO.411667 |
| [47] | Jiang, N. et al. Mechanistic optimization of wide-gap ultrafast laser quartz glass welding with plasma dynamics. Journal of Materials Processing Technology 340, 118840 (2025). doi: 10.1016/j.jmatprotec.2025.118840 |
| [48] | Zimmermann, F. et al. Ultrastable bonding of glass with femtosecond laser bursts. Applied Optics 52, 1149-1154 (2013). doi: 10.1364/AO.52.001149 |
| [49] | Carter, R. M. et al. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy. Applied Optics 56, 4873-4881 (2017). doi: 10.1364/AO.56.004873 |
| [50] | Hu, Y. F. et al. Metal nanoparticles assisted ultrafast laser plasmonic microwelding of oxide–semiconductor interconnects. Small Methods 8, 2301232 (2024). doi: 10.1002/smtd.202301232 |
| [51] | Ren, H. D. & Shen, H. Creating elemental gradient transition layer to improve the thermal fatigue resistance of femtosecond laser glass-metal welding. Journal of Manufacturing Processes 149, 1-11 (2025). doi: 10.1016/j.jmapro.2025.05.051 |
| [52] | Nakamura, A. Suppression of stress and crack generation in local glass melting by picosecond laser irradiation at a high repetition rates with temporal energy modulation. Journal of Laser Micro/Nanoengineering 12, 126-131 (2017). doi: 10.2961/jlmn.2017.02.0014 |
| [53] | Wang, C. et al. High-quality welding of glass by a femtosecond laser assisted with silver nanofilm. Applied Optics 60, 5360-5364 (2021). doi: 10.1364/AO.422078 |
| [54] | Jia, X. S. et al. Continuous wave laser ablation of alumina ceramics under long focusing condition. Journal of Manufacturing Processes 134, 530-546 (2025). doi: 10.1016/j.jmapro.2024.12.071 |
| [55] | Ji, C. H. et al. Direct microwelding of dissimilar glass and Kovar alloy without optical contact using femtosecond laser pulses. Journal of Central South University 29, 3422-3435 (2022). doi: 10.1007/s11771-022-5091-9 |
| [56] | Huo, J. Y. et al. Welding reinforcement between silica glass and stainless steel using nanosecond fiber laser with chromium interlayer. Optics and Lasers in Engineering 172, 107877 (2024). doi: 10.1016/j.optlaseng.2023.107877 |
| [57] | Nguyen, H. et al. Microstructures and mechanical properties of copper-to-glass laser transmission welding employing a nanosecond pulsed laser. Ceramics International 50, 21788-21799 (2024). doi: 10.1016/j.ceramint.2024.03.291 |
| [58] | Zhang, S. Y. et al. Direct welding of dissimilar ceramics YSZ/Sapphire via nanosecond laser pulses. Journal of the European Ceramic Society 44, 4782-4796 (2024). doi: 10.1016/j.jeurceramsoc.2024.02.018 |
| [59] | Feng, Y. H. et al. Direct joining of quartz glass and copper by nanosecond laser. Ceramics International 49, 36056-36070 (2023). doi: 10.1016/j.ceramint.2023.08.285 |
| [60] | Li, X. et al. Study on microstructure and mechanical properties of femtosecond laser welding of non-optical contact quartz glass and Zr-4. Materials Letters 382, 137832 (2025). doi: 10.1016/j.matlet.2024.137832 |
| [61] | Nguyen, H. et al. Characterizations of laser transmission welding of glass and copper using nanosecond pulsed laser. The International Journal of Advanced Manufacturing Technology 130, 2755-2770 (2024). doi: 10.1007/s00170-023-12838-4 |
| [62] | Li, Q. F. , Matthäus, G. & Nolte, S. Glass to copper direct welding with a rough surface by femtosecond laser pulse bursts. Lasers in Manufacturing Conference 2021. LiM, 2021, 2755-2770. |
| [63] | Zhang, G. D. et al. Glass micro welding in thermal accumulation regime with using spatially shaped ultrafast laser. Optics & Laser Technology 168, 109845 (2024). |
| [64] | Li, Y. H., Cheng, X., & Guan, Y. C. Ultrafine microstructure development in laser polishing of selective laser melted Ti alloy. Journal of Materials Science & Technology 83, 1-6 (2021). |
| [65] | Zhang, S. Y. et al. Femtosecond laser-induced honeycomb structure on the interface for the micro-welding of YSZ/sapphire. Journal of Advanced Ceramics 14, 9221052 (2025). doi: 10.26599/JAC.2025.9221052 |
| [66] | Yoshitake, S. et al. Ultrafast and large-gap microwelding of glass substrates by selective absorption of continuous-wave laser into transiently excited electrons. CIRP Annals 71, 157-160 (2022). doi: 10.1016/j.cirp.2022.03.003 |
| [67] | Guo, C. et al. CW laser damage of ceramics induced by air filament. Opto-Electronic Advances 8, 240296 (2025). doi: 10.29026/oea.2025.240296 |
| [68] | Ding Y, et al. Laser-optical-field-modulation fabricating large aperture dual-band antireflection windows for MWIR and LWIR imaging. International Journal of Extreme Manufacturing 8, 025004(2026). |
| [69] | Ding Y, et al. Machine learning-driven optimization of burst femtosecond laser processing for high-performance anti-reflective windows. ACS Applied Materials & Interfaces 17, 65300-65309(2025). |