[1] Cao, S. et al. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: process, post-process treatment, microstructure, and property. Light: Advanced Manufacturing 2, 20 (2021). doi: 10.37188/lam.2021.002
[2] Everton, S. K. et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design 95, 431-445 (2016).
[3] Sames, W. J. et al. The metallurgy and processing science of metal additive manufacturing. International Materials Reviews 61, 315-360 (2016). doi: 10.1080/09506608.2015.1116649
[4] Grasso, M. & Colosimo, B. M. Process defects and in situ monitoring methods in metal powder bed fusion: a review. Measurement Science and Technology 28, 044005 (2017). doi: 10.1088/1361-6501/aa5c4f
[5] Zhao, C. et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Scientific Reports 7, 3602 (2017). doi: 10.1038/s41598-017-03761-2
[6] Doubenskaia, M. et al. Comprehensive optical monitoring of selective laser melting. JLMN-Journal of Laser Micro/Nanoengineering 7, 236-243 (2012). doi: 10.2961/jlmn.2012.03.0001
[7] van Gestel, C. Study of physical phenomena of selective laser melting towards increased productivity. PhD thesis, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland, 2015.
[8] Calta, N. P. et al. High speed hyperspectral thermal imaging of the melt pool dynamics during metal additive manufacturing. Conference on Lasers and Electro-Optics. San Jose, CA USA: Optical Society of America, 2017, ATh4B.2.
[9] Craeghs, T. et al. Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring. Optics and Lasers in Engineering 49, 1440-1446 (2011). doi: 10.1016/j.optlaseng.2011.06.016
[10] Thombansen, U. & Abels, P. Observation of melting conditions in selective laser melting of metals (SLM). Proceedings of SPIE 9741, High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications V. San Francisco, CA USA: SPIE, 2016, 97410S.
[11] Rombouts, M. et al. Fundamentals of Selective Laser Melting of alloyed steel powders. CIRP Annals 55, 187-192 (2006). doi: 10.1016/S0007-8506(07)60395-3
[12] Clijsters, S. et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. The International Journal of Advanced Manufacturing Technology 75, 1089-1101 (2014). doi: 10.1007/s00170-014-6214-8
[13] Kanko, J. A., Sibley, A. P. & Fraser, J. M. In situ morphology-based defect detection of selective laser melting through inline coherent imaging. Journal of Materials Processing Technology 231, 488-500 (2016). doi: 10.1016/j.jmatprotec.2015.12.024
[14] Gunenthiram, V. et al. Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel. Journal of Laser Applications 29, 022303 (2017). doi: 10.2351/1.4983259
[15] DePond, P. J. et al. In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Materials & Design 154, 347-359 (2018).
[16] Fleming, T. G. et al. Tracking and controlling the morphology evolution of 3D powder-bed fusion in situ using inline coherent imaging. Additive Manufacturing 32, 100978 (2020). doi: 10.1016/j.addma.2019.100978
[17] Kruth, J. P. et al. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals 56, 730-759 (2007). doi: 10.1016/j.cirp.2007.10.004
[18] Wyant, J. C., Or eb, B. F. & Hariharan, P. Testing aspherics using two-wavelength holography: use of digital electronic techniques. Applied Optics 23, 4020-4023 (1984). doi: 10.1364/AO.23.004020
[19] Ninane, N. & Georges, M. P. Holographic interferometry using two-wavelength holography for the measurement of large deformations. Applied Optics 34, 1923-1928 (1995). doi: 10.1364/AO.34.001923
[20] Pedrini, G. et al. Shape measurement of microscopic structures using digital holograms. Optics Communications 164, 257-268 (1999). doi: 10.1016/S0030-4018(99)00184-4
[21] Lehmann, P. Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination. Applied Optics 38, 1144-1152 (1999). doi: 10.1364/AO.38.001144
[22] Kolenovic, E. et al. Miniaturized digital holography sensor for distal three-dimensional endoscopy. Applied Optics 42, 5167-5172 (2003). doi: 10.1364/AO.42.005167
[23] Kandulla, J. et al. Two-wavelength method for endoscopic shape measurement by spatial phase-shifting speckle-interferometry. Applied Optics 43, 5429-5437 (2004). doi: 10.1364/AO.43.005429
[24] Khodadad, D. et al. Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements. Applied Optics 54, 5003-5010 (2015). doi: 10.1364/AO.54.005003
[25] Pedrini, G. et al. Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the International Thermonuclear Experimental Reactor tokamak[invited]. Applied Optics 58, A147-A155 (2019).
[26] Fratz, M. et al. Inline application of digital holography[invited]. Applied Optics 58, G120-G126 (2019).
[27] Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179
[28] Yamaguchi, I., Matsumura, T. & Kato, J. I. Phase-shifting color digital holography. Optics Letters 27, 1108-1110 (2002). doi: 10.1364/OL.27.001108
[29] Picart, P. New Techniques in Digital Holography. (Hoboken: John Wiley & Sons, Inc., 2015).
[30] Yamaguchi, I. et al. Image formation in phase-shifting digital holography and applications to microscopy. Applied Optics 40, 6177-6186 (2001). doi: 10.1364/AO.40.006177
[31] Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Optics Letters 24, 291-293 (1999). doi: 10.1364/OL.24.000291
[32] De Nicola, S. et al. Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations. Optics Letters 30, 2706-2708 (2005). doi: 10.1364/OL.30.002706
[33] Picart, P. et al. Investigation of fracture mechanisms in resin concrete using spatially multiplexed digital Fresnel holograms. Optical Engineering 43, 1169-1176 (2004). doi: 10.1117/1.1668282
[34] Tankam, P. et al. Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry. Optics Letters 35, 2055-2057 (2010). doi: 10.1364/OL.35.002055
[35] Picart, P. et al. Time-averaged digital holography. Optics Letters 28, 1900-1902 (2003). doi: 10.1364/OL.28.001900
[36] Kreis, T. M., Adams, M. & Jüptner, W. P. O. Methods of digital holography: a comparison. Proceedings of SPIE 3098, Optical Inspection and Micromeasurements Ⅱ. Munich, Germany: SPIE, 1997, 224-233.
[37] Karray, M., Slangen, P. & Picart, P. Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture. Experimental Mechanics 52, 1275-1286 (2012). doi: 10.1007/s11340-012-9604-6
[38] Kreis, T. Handbook of Holographic Interferometry: Optical and Digital Methods. (Weinheim: Wiley-VCH, 2005).
[39] Piniard, M. et al. Modelling of the photometric balance for two-wavelength spatially multiplexed digital holography. Proceedings of SPIE 11783, Modeling Aspects in Optical Metrology VⅢ. Munich, Germany: SPIE, 2021, 1178308.
[40] Latychevskaia, T. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes. Applied Optics 58, 3597-3603 (2019). doi: 10.1364/AO.58.003597
[41] Guo, Q. L. et al. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing. Additive Manufacturing 31, 100939 (2020). doi: 10.1016/j.addma.2019.100939
[42] Montresor, S. & Picart, P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Optics Express 24, 14322-14343 (2016). doi: 10.1364/OE.24.014322
[43] Lehmann, M. Decorrelation-induced phase errors in phase-shifting speckle interferometry. Applied Optics 36, 3657-3667 (1997). doi: 10.1364/AO.36.003657
[44] Lehmann, M. Phase-shifting speckle interferometry with unresolved speckles: a theoretical investigation. Optics Communications 128, 325-340 (1996). doi: 10.1016/0030-4018(96)00072-7
[45] Lehmann, M. Optimization of wavefield intensities in phase-shifting speckle interferometry. Optics Communications 118, 199-206 (1995). doi: 10.1016/0030-4018(95)00229-2
[46] Middleton, D. An Introduction to Statistical Communication Theory. (New York: McGraw-Hill, 1960).
[47] Davenport, W. B. & Root, W. L. An Introduction to the Theory of Random Signals and Noise. (New York: McGraw-Hill, 1958).
[48] Dainty, J. C. Laser Speckle and Related Phenomena. (Berlin, Heidelberg: Springer, 1975).
[49] V ry, U. & Fercher, A. F. Higher-order statistical properties of speckle fields and their application to rough-surface interferometry. Journal of the Optical Society of America A 3, 988-1000 (1986). doi: 10.1364/JOSAA.3.000988
[50] Chang, N. A. & George, N. Speckle in the 4f optical system. Applied Optics 47, A13-A20 (2008). doi: 10.1364/AO.47.000A13
[51] Fabbro, R. Developments in Nd: YAG laser welding. in Handbook of Laser Welding Technologies: A Volume in Woodhead Publishing Series in Electronic and Optical Materials (ed Katayama, S.) (Philadelphia: Woodhead Publishing, 2013), 47-72.
[52] Ge, W. J., Fuh, J. Y. H. & Na, S. J. Numerical modelling of keyhole formation in selective laser melting of Ti6Al4V. Journal of Manufacturing Processes 62, 646-654 (2021). doi: 10.1016/j.jmapro.2021.01.005
[53] Patel, S. & Vlasea, M. L. Melting mode thresholds in laser powder bed fusion and their application towards process parameter development. Solid Freeform Fabrication Symposium 2019: Proceedings of the 30th Annual International. Austin, 2019, 1190-1199.