[1] |
Haas, H. LiFi is a paradigm-shifting 5G technology. Rev. Phys. 3, 26-31 (2018). doi: 10.1016/j.revip.2017.10.001 |
[2] |
Dursun, I. et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics 3, 1150-1156 (2016). doi: 10.1021/acsphotonics.6b00187 |
[3] |
Ho, K. T. et al. 3.2 gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector. Opt. Express 26, 3037-3045 (2018). doi: 10.1364/OE.26.003037 |
[4] |
Alatawi, A. A. et al. High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. Opt. Express 26, 26355-26364 (2018). doi: 10.1364/OE.26.026355 |
[5] |
Drost, R. J. & Sadler, B. M. Survey of ultraviolet non-line-of-sight communications. Semiconductor Sci. Technol. 29, 084006 (2014). doi: 10.1088/0268-1242/29/8/084006 |
[6] |
Sun, X. B. et al. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Opt. Express 26, 12870-12877 (2018). doi: 10.1364/OE.26.012870 |
[7] |
Burns, A. A. Aircraft defense system against manpads with IR/UV seekers. US7523692B1. https://patents.google.com/patent/US7523692B1/en. (2009). |
[8] |
Norris, V. J. Jr. System for enhancing navigation and surveillance in low visibility conditions, EP0880769A1. https://patents.google.com/patent/EP0880769A1/en. (1998). |
[9] |
Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696-705 (2009). doi: 10.1038/nphoton.2009.230 |
[10] |
Eisaman, M. D. et al. Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). doi: 10.1063/1.3610677 |
[11] |
Oubei, H. M. et al. Light based underwater wireless communications. Jpn. J. Appl. Phys. 57, 08PA06 (2018). doi: 10.7567/JJAP.57.08PA06 |
[12] |
Min, J. W. et al. Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. J. Nanophotonics 12, 043511 (2018). |
[13] |
Barkad, H. A. et al. Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes. J. Phys. D 43, 465104 (2010). doi: 10.1088/0022-3727/43/46/465104 |
[14] |
Lin, C. H. et al. A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance. npj 2D Mater. Appl. 2, 23 (2018). doi: 10.1038/s41699-018-0070-6 |
[15] |
Shi, L. & Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 12, 2453-2459 (2012). doi: 10.1109/JSEN.2012.2192103 |
[16] |
Levell, J. W., Giardini, M. E. & Samuel, I. D. W. A hybrid organic semiconductor/silicon photodiode for efficient ultraviolet photodetection. Opt. Express 18, 3219-3225 (2010). doi: 10.1364/OE.18.003219 |
[17] |
Kuhlmann, W. Photodetector for ultraviolet light radiation. US20020096728A1. https://patents.google.com/patent/US20020096728. (2004). |
[18] |
Xie, F. Y. et al. Energy transfer and luminescent properties of Ca8MgLu(PO4)7:Tb3+/Eu3+ as a green-to-red color tunable phosphor under NUV excitation. RSC Adv. 5, 59830-59836 (2015). doi: 10.1039/C5RA08680A |
[19] |
Dai, P. P. et al. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light 5, e16024 (2016). doi: 10.1038/lsa.2016.24 |
[20] |
Dong, Y. R. et al. Nanopatterned luminescent concentrators for visible light communications. Opt. Express 25, 21926-21934 (2017). doi: 10.1364/OE.25.021926 |
[21] |
Zhang, M. J. et al. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection. Adv. Optical Mater. 6, 1800077 (2018). doi: 10.1002/adom.201800077 |
[22] |
Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015). doi: 10.1038/ncomms9056 |
[23] |
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692-3696 (2015). doi: 10.1021/nl5048779 |
[24] |
Pan, J. et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett. 6, 5027-5033 (2015). doi: 10.1021/acs.jpclett.5b02460 |
[25] |
Yang, D. C. et al. Lasing characteristics of CH3NH3PbCl3 single-crystal microcavities under multiphoton excitation. Adv. Optical Mater. 6, 1700992 (2018). doi: 10.1002/adom.201700992 |
[26] |
Dutta, A. et al. Tuning the size of CsPbBr3 nanocrystals: all at one constant temperature. ACS Energy Lett. 3, 329-334 (2018). doi: 10.1021/acsenergylett.7b01226 |
[27] |
Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88-93 (2018). doi: 10.1038/s41586-018-0451-1 |
[28] |
Garbuzov, D. Z. et al. Organic films deposited on Si p‐n junctions: accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings. J. Appl. Phys. 80, 4644-4648 (1996). doi: 10.1063/1.363447 |
[29] |
Khon, E. et al. Inorganic solids of CdSe nanocrystals exhibiting high emission quantum yield. Adv. Funct. Mater. 22, 3714-3722 (2012). doi: 10.1002/adfm.201200939 |
[30] |
Maity, S., Sahu, P. P. & Bhunia, C. T. High photo sensing performance with electro-optically efficient silicon based ZnO/ZnMgO heterojunction structure. IEEE Sens. J. 18, 6569-6575 (2018). doi: 10.1109/JSEN.2018.2849089 |
[31] |
Maity, S., Muchahary, D. & Sahu, P. P. Enhancing responsivity and detectevity of Si-ZnO photodetector with growth of densely packed and aligned hexagonal nanorods. IEEE Trans. Nanotechnol. 16, 939-945 (2017). doi: 10.1109/TNANO.2017.2726101 |
[32] |
Yu, Y. et al. Solution-possessed vertical photodetectors based on composition-dependent cesium lead halide (CsPbX3, X = Cl, Br, and I) perovskite quantum dots. In (eds Jiang, S. & Digonnet, M. J. F.) Proc 589 SPIE 10914, Optical Components and Materials XVI. (SPIE, San Francisco, CA, 2019). https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10914.toc. |
[33] |
Sinatra, L. et al. P‐203: Late‐News Poster: Novel techniques for highly stable luminescent perovskite halide quantum dots. SID Symp. Dig. Tech. Pap. 49, 1681-1684 (2018). doi: 10.1002/sdtp.12463 |
[34] |
Seth, S. et al. Fluorescence blinking and photoactivation of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I. J. Phys. Chem. Lett. 7, 266-271 (2016). doi: 10.1021/acs.jpclett.5b02639 |
[35] |
Ruan, L. J., Tang, B. & Ma, Y. Improving the stability of CsPbBr3 nanocrystals in ethanol by capping with PbBr2-adlayers. J. Phys. Chem. C 123, 11959-11967 (2019). doi: 10.1021/acs.jpcc.9b01645 |
[36] |
Hai, J. et al. Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Commun. 53, 5400-5403 (2017). doi: 10.1039/C7CC01152K |
[37] |
Sun, H. et al. Enhancing the stability of CsPbBr3 nanocrystals by sequential surface adsorption of S2− and metal ions. Chem. Commun. 54, 9345-9348 (2018). doi: 10.1039/C8CC04171G |
[38] |
Wang, B. et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl. Mater. Interfaces 10, 23303-23310 (2018). doi: 10.1021/acsami.8b04198 |
[39] |
Li, J. et al. Ultraviolet light induced degradation of luminescence in CsPbBr3 perovskite nanocrystals. Mater. Res. Bull. 102, 86-91 (2018). doi: 10.1016/j.materresbull.2018.02.021 |
[40] |
Li, J. M. et al. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv. 6, 78311-78316 (2016). doi: 10.1039/C6RA17008K |
[41] |
Yadav, R. et al. Intense red-emitting Y4Al2O9:Eu3+phosphor with short decay time and high color purity for advanced plasma display panel. Opt. Express 17, 22023-22030 (2009). doi: 10.1364/OE.17.022023 |
[42] |
Oertel, D. C. et al. Photodetectors based on treated CdSe quantum-dot films. Appl. Phys. Lett. 87, 213505 (2005). doi: 10.1063/1.2136227 |
[43] |
Peyronel, T. et al. Luminescent detector for free-space optical communication. Optica 3, 787-792 (2016). doi: 10.1364/OPTICA.3.000787 |
[44] |
Sajjad, M. T. et al. Novel fast color-converter for visible light communication using a blend of conjugated polymers. ACS Photonics 2, 194-199 (2015). doi: 10.1021/ph500451y |
[45] |
Hu, F. R. et al. Slow auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett. 16, 6425-6430 (2016). doi: 10.1021/acs.nanolett.6b02874 |
[46] |
Yarita, N. et al. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 8, 1413-1418 (2017). doi: 10.1021/acs.jpclett.7b00326 |
[47] |
Wang, Z. Y. et al. Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication. ACS Appl. Mater. Interfaces 9, 35253-35259 (2017). doi: 10.1021/acsami.7b11277 |
[48] |
Zhou, Z. J. et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted, aggregation-enhanced emission for light-emitting devices and visible light communication. Adv. Sci. 5, 1800369 (2018). doi: 10.1002/advs.201800369 |
[49] |
Mei, S. L. et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces 10, 5641-5648 (2018). doi: 10.1021/acsami.7b17810 |
[50] |
Zhou, D. et al. Microwave-assisted heating method toward multicolor quantum dot-based phosphors with much improved luminescence. ACS Appl. Mater. Interfaces 10, 27160-27170 (2018). doi: 10.1021/acsami.8b06323 |