[1] Frobisher, M. Jr. Fundamentals of Microbiology (Saunders, London, 1953).
[2] Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9, 974-980 (1942). doi: 10.1016/S0031-8914(42)80079-8
[3] Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0
[4] Leith, E. N. & Upatnieks, J. Reconstructed wavefronts and communication theory. J. Opti. Soc. Am. 52, 1123-1130 (1962). doi: 10.1364/JOSA.52.001123
[5] Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179-181 (1994). doi: 10.1364/AO.33.000179
[6] Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Opt. Lett. 22, 1268-1270 (1997). doi: 10.1364/OL.22.001268
[7] Xu, W. B. et al. Digital in-line holography for biological applications. Proc. Natl Acad. Sci. USA 98, 11301-11305 (2001). doi: 10.1073/pnas.191361398
[8] Iwai, H. et al. Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt. Lett. 29, 2399-2401 (2004). doi: 10.1364/OL.29.002399
[9] Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468-470 (2005). doi: 10.1364/OL.30.000468
[10] Popescu, G. et al. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775-777 (2006). doi: 10.1364/OL.31.000775
[11] Shaked, N. T., Rinehart, M. T. & Wax, A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt. Lett. 34, 767-769 (2009). doi: 10.1364/OL.34.000767
[12] Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889-895 (2012). doi: 10.1038/nmeth.2114
[13] Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x
[14] Waller, L., Tian, L. & Barbastathis, G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express 18, 12552-12561 (2010). doi: 10.1364/OE.18.012552
[15] Ford, T. N., Chu, K. K. & Mertz, J. Phase-gradient microscopy in thick tissue with oblique back-illumination. Nat. Methods 9, 1195-1197 (2012). doi: 10.1038/nmeth.2219
[16] Zheng, G. A., Horstmeyer, R. & Yang, C. H. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[17] Tian, L. et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. Biomed. Opt. Express 5, 2376-2389 (2014). doi: 10.1364/BOE.5.002376
[18] Dunn, G. A. & Zicha, D. Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239-1249 (1995).
[19] Charrière, F. et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Express 14, 7005-7013 (2006). doi: 10.1364/OE.14.007005
[20] Park, Y. K. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 13730-13735 (2008). doi: 10.1073/pnas.0806100105
[21] Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc. Natl Acad. Sci. USA 108, 13124-13129 (2011). doi: 10.1073/pnas.1100506108
[22] Sridharan, S. et al. Prediction of prostate cancer recurrence using quantitative phase imaging. Sci. Rep. 5, 9976 (2015). doi: 10.1038/srep09976
[23] Hosseini, P. et al. Pushing phase and amplitude sensitivity limits in interferometric microscopy. Opt. Lett. 41, 1656-1659 (2016). doi: 10.1364/OL.41.001656
[24] Park, Y. K. et al. Diffraction phase and fluorescence microscopy. Opt. Express 14, 8263-8268 (2006). doi: 10.1364/OE.14.008263
[25] Dardikman, G. et al. Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy. Biomed. Opt. Express 9, 1177-1189 (2018). doi: 10.1364/BOE.9.001177
[26] Coblentz, W. W. Investigations of Infra-Red Spectra (Carnegie Institution of Washington, Washington, D.C., 1905).
[27] Goetz, G. et al. Interferometric mapping of material properties using thermal perturbation. Proc. Natl Acad. Sci. USA 115, E2499-E2508 (2018). doi: 10.1073/pnas.1712763115
[28] Bhaduri, B. et al. Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photonics 6, 57-119 (2014). doi: 10.1364/AOP.6.000057
[29] Ingle, J. D. J. & Crouch, S. R. Spectrochemical Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1988).
[30] Ghosh, G. Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, San Diego, CA, 1998).
[31] Halliday, D., Resnick, R. & Walker, J. Fundamentals of Physics 10th edn (John Wiley & Sons, New York, 2013).
[32] ANSI. American National Standard for Safe Use of Lasers (Laser Institute of America, 2007).
[33] Toda, K. et al. Molecular contrast on phase-contrast microscope. Sci. Rep. 9, 9957 (2019). doi: 10.1038/s41598-019-46383-6
[34] Tamamitsu, M. et al. Quantitative phase imaging with molecular vibrational sensitivity. Opt. Lett. 44, 3729-3732 (2019). doi: 10.1364/OL.44.003729
[35] Cariou, J. M. et al. Refractive-index variations with temperature of PMMA and polycarbonate. Appl. Opt. 25, 334-336 (1986). doi: 10.1364/AO.25.000334
[36] Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717-719 (2007). doi: 10.1038/nmeth1078
[37] Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256-263 (2014). doi: 10.1038/nphoton.2013.350
[38] Tian, L. & Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2, 104-111 (2015). doi: 10.1364/OPTICA.2.000104
[39] Zhang, D. L. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016). doi: 10.1126/sciadv.1600521
[40] Mërtiri, A. et al. Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser. Appl. Phys. Lett. 101, 044101 (2012). doi: 10.1063/1.4737942
[41] Mertiri, A. et al. Nonlinear midinfrared photothermal spectroscopy using Zharov splitting and quantum cascade lasers. ACS Photonics 1, 696-702 (2014). doi: 10.1021/ph500114h
[42] Totachawattana, A. et al. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast. Opt. Lett. 41, 179-182 (2016). doi: 10.1364/OL.41.000179
[43] Li, Z. M. et al. Super-resolution far-field infrared imaging by photothermal heterodyne imaging. J. Phys. Chem. B 121, 8838-8846 (2017). doi: 10.1021/acs.jpcb.7b06065
[44] Bai, Y. R. et al. Bond-selective imaging of cells by mid-infrared photothermal microscopy in high wavenumber region. J. Phys. Chem. B 121, 10249-10255 (2017). doi: 10.1021/acs.jpcb.7b09570
[45] Chatterjee, R. et al. Subdiffraction infrared imaging of mixed cation perovskites: probing local cation heterogeneities. ACS Energy Lett. 3, 469-475 (2018). doi: 10.1021/acsenergylett.7b01306
[46] Wieliczka, D. M. et al. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. Appl. Opt. 28, 1714-1719 (1989). doi: 10.1364/AO.28.001714
[47] Chowdhury, S. & Izatt, J. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging. Biomed. Opt. Express 4, 1795-1805 (2013). doi: 10.1364/BOE.4.001795
[48] Hanninen, A. M. et al. High-resolution infrared imaging of biological samples with third-order sum-frequency generation microscopy. Biomed. Opt. Express 9, 4807-4817 (2018). doi: 10.1364/BOE.9.004807