[1] |
Ronchi, V. & Barocas, V. The Nature of Light: An Historical Survey (Harvard University Press, 1970). |
[2] |
Huard, S. Polarization of Light (Wiley, 1997). |
[3] |
Goldstein, D. Polarized Light 2nd edn (Marcel Dekker, 2003). |
[4] |
Chipman, R. A., Lam, W. S. T. & Young, G. Polarized Light and Optical Systems (CRC Press, 2018). |
[5] |
Pérez, J. J. G. & Ossikovski, R. Polarized Light and the Mueller Matrix Approach (CRC Press, 2017). |
[6] |
Zhan, Q. W. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1–57 (2009). doi: 10.1364/AOP.1.000001 |
[7] |
Rosales-Guzmán, C., Ndagano, B. & Forbes, A. A review of complex vector light fields and their applications. J. Opt. 20, 123001 (2018). doi: 10.1088/2040-8986/aaeb7d |
[8] |
Forbes, A., De Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021). |
[9] |
Wang, J. W., Castellucci, F. & Franke-Arnold, S. Vectorial light–matter interaction: exploring spatially structured complex light fields. AVS Quantum Sci. 2, 031702 (2020). doi: 10.1116/5.0016007 |
[10] |
Slussarenko, S. et al. Guiding light via geometric phases. Nat. Photonics 10, 571–575 (2016). doi: 10.1038/nphoton.2016.138 |
[11] |
Cloude, S. Polarisation: Applications in Remote Sensing (OUP Oxford, 2009). |
[12] |
Ndagano, B. et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13, 397–402 (2017). doi: 10.1038/nphys4003 |
[13] |
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006). doi: 10.1103/PhysRevLett.96.163905 |
[14] |
Bliokh, K. Y. et al. Spin-orbit interactions of light. Nat. Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201 |
[15] |
Schulz, M. et al. Giant intrinsic circular dichroism of prolinol-derived squaraine thin films. Nat. Commun. 9, 2413 (2018). doi: 10.1038/s41467-018-04811-7 |
[16] |
He, H. H. et al. Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 37, 2534–2548 (2019). doi: 10.1109/JLT.2018.2868845 |
[17] |
Oldenbourg, R. A new view on polarization microscopy. Nature 381, 811–812 (1996). doi: 10.1038/381811a0 |
[18] |
Gurjar, R. S. et al. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7, 1245–1248 (2001). doi: 10.1038/nm1101-1245 |
[19] |
Qiu, L. et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus. Nat. Med. 16, 603–606 (2010). doi: 10.1038/nm.2138 |
[20] |
Ghosh, N. & Vitkin, I. A. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16, 110801 (2011). doi: 10.1117/1.3652896 |
[21] |
Novikova, T. et al. Special section guest editorial: polarized light for biomedical applications. J. Biomed. Opt. 21, 071001 (2016). doi: 10.1117/1.JBO.21.7.071001 |
[22] |
Tuchin, V. V. Polarized light interaction with tissues. J. Biomed. Opt. 21, 071114 (2016). doi: 10.1117/1.JBO.21.7.071114 |
[23] |
Ramella-Roman, J. C., Saytashev, I. & Piccini, M. A review of polarization-based imaging technologies for clinical and preclinical applications. J. Opt. 22, 123001 (2020). doi: 10.1088/2040-8986/abbf8a |
[24] |
Qi, J. & Elson, D. S. Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophotonics 10, 950–982 (2017). doi: 10.1002/jbio.201600152 |
[25] |
Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007). |
[26] |
Azzam, R. M. A., Bashara, N. M. & Ballard, S. S. Ellipsometry and polarized light. Phys. Today 31, 72 (1978). doi: 10.1063/1.2994821 |
[27] |
Mendoza-Galván, A. et al. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films. J. Opt. 20, 024001 (2018). doi: 10.1088/2040-8986/aa9e7d |
[28] |
Azzam, R. M. A. Stokes-vector and Mueller-matrix polarimetry. J. Optical Soc. Am. A 33, 1396–1408 (2016). doi: 10.1364/JOSAA.33.001396 |
[29] |
Azzam, R. M. A. Mueller-matrix ellipsometry: a review. Proc. SPIE 3121, 369–405 (1997). |
[30] |
Song, B. K. et al. Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Appl. Surf. Sci. 439, 1079–1087 (2018). doi: 10.1016/j.apsusc.2018.01.051 |
[31] |
Jiang, H. et al. Characterization of volume gratings based on distributed dielectric constant model using Mueller matrix ellipsometry. Appl. Sci. 9, 698 (2019). doi: 10.3390/app9040698 |
[32] |
Chang, J. T. et al. Division of focal plane polarimeter-based 3×4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues. J. Biomed. Opt. 21, 056002 (2016). doi: 10.1117/1.JBO.21.5.056002 |
[33] |
Fu, Y. F. et al. Flexible 3×3 Mueller matrix endoscope prototype for cancer detection. IEEE Trans. Instrum. Meas. 67, 1700–1712 (2018). doi: 10.1109/TIM.2018.2803847 |
[34] |
De Boer, J. F., Hitzenberger, C. K. & Yasuno, Y. Polarization sensitive optical coherence tomography—a review. Biomed. Opt. Express 8, 1838–1873 (2017). doi: 10.1364/BOE.8.001838 |
[35] |
Ghosh, N., Patel, H. S. & Gupta, P. K. Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers. Opt. Express 11, 2198–2205 (2003). doi: 10.1364/OE.11.002198 |
[36] |
Kienle, A. & Hibst, R. Light guiding in biological tissue due to scattering. Phys. Rev. Lett. 97, 018104 (2006). doi: 10.1103/PhysRevLett.97.018104 |
[37] |
Baravian, C., Dillet, J. & Decruppe, J. P. Birefringence determination in turbid media. Phys. Rev. E 75, 032501 (2007). doi: 10.1103/PhysRevE.75.032501 |
[38] |
Wang, X. D. & Wang, L. V. Propagation of polarized light in birefringent turbid media: a Monte Carlo study. J. Biomed. Opt. 7, 279–290 (2002). doi: 10.1117/1.1483315 |
[39] |
Wang, X. D. & Wang, L. V. Propagation of polarized light in birefringent turbid media: time-resolved simulations. Opt. Express 9, 254–259 (2001). doi: 10.1364/OE.9.000254 |
[40] |
Du, E. et al. Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media. J. Biomed. Opt. 17, 126016 (2012). doi: 10.1117/1.JBO.17.12.126016 |
[41] |
He, H. H. et al. Application of sphere-cylinder scattering model to skeletal muscle. Opt. Express 18, 15104–15112 (2010). doi: 10.1364/OE.18.015104 |
[42] |
Chen, D. S. et al. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing. Biomed. Opt. Express 8, 3559–3570 (2017). doi: 10.1364/BOE.8.003559 |
[43] |
Donner, C. & Jensen, H. W. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 1032–1039 (2005). doi: 10.1145/1073204.1073308 |
[44] |
Van De Hulst, H. C. Light Scattering by Small Particles (Dover Publications, 1981). |
[45] |
Wang, L. H., Jacques, S. L. & Zheng, L. Q. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Prog. Biomed. 47, 131–146 (1995). doi: 10.1016/0169-2607(95)01640-F |
[46] |
Yun, T. L. et al. Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt. Express 17, 16590–16602 (2009). doi: 10.1364/OE.17.016590 |
[47] |
Brosseau, C. Fundamentals of Polarized Light: a Statistical Optics Approach (Wiley-Interscience, 1998). |
[48] |
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013). |
[49] |
Ling, X. H. et al. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 80, 066401 (2017). doi: 10.1088/1361-6633/aa5397 |
[50] |
Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2017). doi: 10.1088/2040-8978/19/1/013001 |
[51] |
Bass, M. et al. Handbook of Optics, Volume Ⅳ: Optical Properties of Materials 3rd edn. (McGraw-Hill Education, 2009). |
[52] |
Lu, S. Y. & Chipman, R. A. Interpretation of Mueller matrices based on polar decomposition. J. Optical Soc. Am. A 13, 1106–1113 (1996). doi: 10.1364/JOSAA.13.001106 |
[53] |
Arteaga, O. & Canillas, A. Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices. J. Optical Soc. Am. A 26, 783–793 (2009). doi: 10.1364/JOSAA.26.000783 |
[54] |
Ossikovski, R., De Martino, A. & Guyot, S. Forward and reverse product decompositions of depolarizing Mueller matrices. Opt. Lett. 32, 689–691 (2007). doi: 10.1364/OL.32.000689 |
[55] |
Ortega-Quijano, N. & Arce-Diego, J. L. Mueller matrix differential decomposition. Opt. Lett. 36, 1942–1944 (2011). doi: 10.1364/OL.36.001942 |
[56] |
Arteaga, O., Garcia-Caurel, E. & Ossikovski, R. Anisotropy coefficients of a Mueller matrix. J. Optical Soc. Am. A 28, 548–553 (2011). doi: 10.1364/JOSAA.28.000548 |
[57] |
He, H. H. et al. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photonics Lasers Med. 2, 129–137 (2013). doi: 10.1515/plm-2012-0052 |
[58] |
Ghosh, N., Wood, M. F. G. & Vitkin, I. A. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt. 13, 044036 (2008). doi: 10.1117/1.2960934 |
[59] |
Gil, J. J. Characteristic properties of Mueller matrices. J. Optical Soc. Am. A 17, 328–334 (2000). doi: 10.1364/JOSAA.17.000328 |
[60] |
Ossikovski, R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Optical Soc. Am. A 26, 1109–1118 (2009). doi: 10.1364/JOSAA.26.001109 |
[61] |
Vizet, J. & Ossikovski, R. Symmetric decomposition of experimental depolarizing Mueller matrices in the degenerate case. Appl. Opt. 57, 1159–1167 (2018). doi: 10.1364/AO.57.001159 |
[62] |
Cloude, S. R. Group theory and polarisation algebra. Optik 75, 26–36 (1985). |
[63] |
Pezzaniti, J. L. & Chipman, R. A. Mueller matrix imaging polarimetry. Optical Eng. 34, 1558–1568 (1995). doi: 10.1117/12.206161 |
[64] |
Azzam, R. M. A. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2, 148–150 (1978). doi: 10.1364/OL.2.000148 |
[65] |
Goldstein, D. H. Mueller matrix dual-rotating retarder polarimeter. Appl. Opt. 31, 6676–6683 (1992). doi: 10.1364/AO.31.006676 |
[66] |
Smith, M. H. Optimization of a dual-rotating-retarder Mueller matrix polarimeter. Appl. Opt. 41, 2488–2493 (2002). doi: 10.1364/AO.41.002488 |
[67] |
Dubreuil, M. et al. Snapshot Mueller matrix polarimeter by wavelength polarization coding. Opt. Express 15, 13660–13668 (2007). doi: 10.1364/OE.15.013660 |
[68] |
He, C. et al. Full Poincare mapping for ultra-sensitive polarimetry. Preprint at https://arxiv.org/abs/2101.09372 (2021). |
[69] |
Sabatke, D. S. et al. Optimization of retardance for a complete Stokes polarimeter. Opt. Lett. 25, 802–804 (2000). doi: 10.1364/OL.25.000802 |
[70] |
Tyo, J. S. Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. Appl. Opt. 41, 619–630 (2002). doi: 10.1364/AO.41.000619 |
[71] |
He, C. et al. Linear polarization optimized Stokes polarimeter based on four-quadrant detector. Appl. Opt. 54, 4458–4463 (2015). doi: 10.1364/AO.54.004458 |
[72] |
He, C. et al. Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10, 4264 (2019). doi: 10.1038/s41467-019-12286-3 |
[73] |
Li, X. B. et al. Learning-based denoising for polarimetric images. Opt. Express 28, 16309–16321 (2020). doi: 10.1364/OE.391017 |
[74] |
Abubakar, A. et al. A hybrid denoising algorithm of BM3D and KSVD for Gaussian noise in DoFP polarization images. IEEE Access 8, 57451–57459 (2020). doi: 10.1109/ACCESS.2020.2982535 |
[75] |
Bueno, J. M. Polarimetry using liquid-crystal variable retarders: theory and calibration. J. Opt. A: Pure Appl. Opt. 2, 216–222 (2000). doi: 10.1088/1464-4258/2/3/308 |
[76] |
Skumanich, A. et al. The calibration of the advanced Stokes polarimeter. Astrophys. J. Suppl. Ser. 110, 357–380 (1997). doi: 10.1086/313004 |
[77] |
Arteaga, O. et al. Mueller matrix polarimetry with four photoelastic modulators: theory and calibration. Appl. Opt. 51, 6805–6817 (2012). doi: 10.1364/AO.51.006805 |
[78] |
Smith, M. H. et al. Infrared Stokes polarimeter calibration. Proc. SPIE 4133, 55–64 (2000). doi: 10.1117/12.406641 |
[79] |
Tyo, J. S. et al. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006). doi: 10.1364/AO.45.005453 |
[80] |
Jacques, S. L., Ramella-Roman, J. C. & Lee, K. Imaging skin pathology with polarized light. J. Biomed. Opt. 7, 329–340 (2002). doi: 10.1117/1.1484498 |
[81] |
Jacques, S. L., Roman, J. R. & Lee, K. Imaging superficial tissues with polarized light. Lasers Surg. Med. 26, 119–129 (2000). doi: 10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y |
[82] |
Demos, S. G., Radousky, H. B. & Alfano, R. R. Deep subsurface imaging in tissues using spectral and polarization filtering. Opt. Express 7, 23–28 (2000). doi: 10.1364/OE.7.000023 |
[83] |
Demos, S. G. & Alfano, R. R. Optical polarization imaging. Appl. Opt. 36, 150–155 (1997). doi: 10.1364/AO.36.000150 |
[84] |
Groner, W. et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat. Med. 5, 1209–1212 (1999). doi: 10.1038/13529 |
[85] |
Bargo, P. R. & Kollias, N. Measurement of skin texture through polarization imaging. Br. J. Dermatol. 162, 724–731 (2010). doi: 10.1111/j.1365-2133.2010.09639.x |
[86] |
Sridhar, S. & Da Silva, A. Enhanced contrast and depth resolution in polarization imaging using elliptically polarized light. J. Biomed. Opt. 21, 071107 (2016). doi: 10.1117/1.JBO.21.7.071107 |
[87] |
Collett, E. Measurement of the four Stokes polarization parameters with a single circular polarizer. Opt. Commun. 52, 77–80 (1984). doi: 10.1016/0030-4018(84)90286-4 |
[88] |
Laude-Boulesteix, B. et al. Mueller polarimetric imaging system with liquid crystals. Appl. Opt. 43, 2824–2832 (2004). doi: 10.1364/AO.43.002824 |
[89] |
Sornsin, E. A. & Chipman, R. A. Mueller matrix polarimetry of electro-optic PLZT spatial light modulators. Proc. SPIE 2873, 196–201 (1996). doi: 10.1117/12.246217 |
[90] |
Peinado, A., Lizana, A. & Campos, J. Optimization and tolerance analysis of a polarimeter with ferroelectric liquid crystals. Appl. Opt. 52, 5748–5757 (2013). doi: 10.1364/AO.52.005748 |
[91] |
Alali, S., Gribble, A. & Vitkin, I. A. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts. Opt. Lett. 41, 1038–1041 (2016). doi: 10.1364/OL.41.001038 |
[92] |
Qi, J. et al. Narrow band 3 × 3 Mueller polarimetric endoscopy. Biomed. Opt. Express 4, 2433–2449 (2013). doi: 10.1364/BOE.4.002433 |
[93] |
Dong, Y. et al. Probing variations of fibrous structures during the development of breast ductal carcinoma tissues via Mueller matrix imaging. Biomed. Opt. Express 11, 4960–4975 (2020). doi: 10.1364/BOE.397441 |
[94] |
Dong, Y. et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 8, 3643–3655 (2017). doi: 10.1364/BOE.8.003643 |
[95] |
Dong, Y. et al. Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng. 68, 881–892 (2021). doi: 10.1109/TBME.2020.3019755 |
[96] |
Hagen, N., Oka, K. & Dereniak, E. L. Snapshot Mueller matrix spectropolarimeter. Opt. Lett. 32, 2100–2102 (2007). doi: 10.1364/OL.32.002100 |
[97] |
Azzam, R. M. A. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light. Opt. Acta. : Int. J. Opt. 29, 685–689 (1982). doi: 10.1080/713820903 |
[98] |
Jellison, G. E. Jr. Four-channel polarimeter for time-resolved ellipsometry. Opt. Lett. 12, 766–768 (1987). doi: 10.1364/OL.12.000766 |
[99] |
Compain, E. & Drevillon, B. Broadband division-of-amplitude polarimeter based on uncoated prisms. Appl. Opt. 37, 5938–5944 (1998). doi: 10.1364/AO.37.005938 |
[100] |
Peinado, A. et al. Conical refraction as a tool for polarization metrology. Opt. Lett. 38, 4100–4103 (2013). doi: 10.1364/OL.38.004100 |
[101] |
Haigh, J. A., Kinebas, Y. & Ramsay, A. J. Inverse conoscopy: a method to measure polarization using patterns generated by a single birefringent crystal. Appl. Opt. 53, 184–188 (2014). doi: 10.1364/AO.53.000184 |
[102] |
Chang, J. T. et al. Single-shot spatially modulated Stokes polarimeter based on a GRIN lens. Opt. Lett. 39, 2656–2659 (2014). doi: 10.1364/OL.39.002656 |
[103] |
Bhandari, P., Voss, K. J. & Logan, L. An instrument to measure the downwelling polarized radiance distribution in the ocean. Opt. Express 19, 17609–17620 (2011). doi: 10.1364/OE.19.017609 |
[104] |
Pezzaniti, J. L. & Chenault, D. B. A division of aperture MWIR imaging polarimeter. Proc. SPIE 5888, 58880V (2005). doi: 10.1117/12.623543 |
[105] |
Zimmerman, B. G. et al. Pinhole array implementation of star test polarimetry. Proc. SPIE 8949, 894912 (2014). doi: 10.1117/12.2042093 |
[106] |
Chun, C. S. L., Fleming, D. L. & Torok, E. J. Polarization-sensitive thermal imaging. Proc. SPIE 2234, 275–286 (1994). doi: 10.1117/12.181025 |
[107] |
Nordin, G. P. et al. Micropolarizer array for infrared imaging polarimetry. J. Optical Soc. Am. A 16, 1168–1174 (1999). doi: 10.1364/JOSAA.16.001168 |
[108] |
Andreou, A. G. & Kalayjian, Z. K. Polarization imaging: principles and integrated polarimeters. IEEE Sens. J. 2, 566–576 (2002). doi: 10.1109/JSEN.2003.807946 |
[109] |
Chen, Z. Y., Wang, X. & Liang, R. G. Calibration method of microgrid polarimeters with image interpolation. Appl. Opt. 54, 995–1001 (2015). doi: 10.1364/AO.54.000995 |
[110] |
Gao, S. K. & Gruev, V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Opt. Express 19, 26161–26173 (2011). doi: 10.1364/OE.19.026161 |
[111] |
Gao, S. K. & Gruev, V. Gradient-based interpolation method for division-of-focal-plane polarimeters. Opt. Express 21, 1137–1151 (2013). doi: 10.1364/OE.21.001137 |
[112] |
Gruev, V., Perkins, R. & York, T. CCD polarization imaging sensor with aluminum nanowire optical filters. Opt. Express 18, 19087–19094 (2010). doi: 10.1364/OE.18.019087 |
[113] |
Hsu, W. L. et al. Polarization microscope using a near infrared full-Stokes imaging polarimeter. Opt. Express 23, 4357–4368 (2015). doi: 10.1364/OE.23.004357 |
[114] |
Liu, Y. et al. Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor. J. Biomed. Opt. 17, 116001 (2012). doi: 10.1117/1.JBO.17.11.116001 |
[115] |
Millerd, J. et al. Pixelated phase-mask dynamic interferometers. In Fringe 2005 (ed Osten, W. ) 640–647 (Springer, 2006). |
[116] |
Ratliff, B. M., LaCasse, C. F. & Tyo, J. S. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery. Opt. Express 17, 9112–9125 (2009). doi: 10.1364/OE.17.009112 |
[117] |
Ratliff, B. M. et al. Dead pixel replacement in LWIR microgrid polarimeters. Opt. Express 15, 7596–7609 (2007). doi: 10.1364/OE.15.007596 |
[118] |
Tyo, J. S., LaCasse, C. F. & Ratliff, B. M. Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters. Opt. Lett. 34, 3187–3189 (2009). doi: 10.1364/OL.34.003187 |
[119] |
York, T. & Gruev, V. Calibration method for division of focal plane polarimeters in the optical and near-infrared regime. Proc. SPIE 8012, 80120H (2011). doi: 10.1117/12.883950 |
[120] |
York, T. et al. Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications. Proc. IEEE 102, 1450–1469 (2014). doi: 10.1109/JPROC.2014.2342537 |
[121] |
Zhang, Z. G. et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry. Rev. Sci. Instrum. 85, 105002 (2014). doi: 10.1063/1.4897270 |
[122] |
Zhao, X. J. et al. Patterned dual-layer achromatic micro-quarter-wave-retarder array for active polarization imaging. Opt. Express 22, 8024–8034 (2014). doi: 10.1364/OE.22.008024 |
[123] |
Oka, K. & Saito, N. Snapshot complete imaging polarimeter using Savart plates. Proc. SPIE 6295, 629508 (2006). doi: 10.1117/12.683284 |
[124] |
Suárez-Bermejo, J. C. et al. Mueller matrix polarimetry using full Poincaré beams. Opt. Lasers Eng. 122, 134–141 (2019). doi: 10.1016/j.optlaseng.2019.05.030 |
[125] |
Goldstein, D. H. & Chipman, R. A. Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A 7, 693–700 (1990). doi: 10.1364/JOSAA.7.000693 |
[126] |
Ahmad, J. E. & Takakura, Y. Error analysis for rotating active Stokes–Mueller imaging polarimeters. Opt. Lett. 31, 2858–2860 (2006). doi: 10.1364/OL.31.002858 |
[127] |
Dai, H. & Yan, C. X. Measurement errors resulted from misalignment errors of the retarder in a rotating-retarder complete Stokes polarimeter. Opt. Express 22, 11869–11883 (2014). doi: 10.1364/OE.22.011869 |
[128] |
Mu, T. K. et al. Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters. Opt. Express 23, 10822–10835 (2015). doi: 10.1364/OE.23.010822 |
[129] |
Macias-Romero, C. & Török, P. Eigenvalue calibration methods for polarimetry. J. Eur. Opt. Soc. Rapid Publ. 7, 12004 (2012). doi: 10.2971/jeos.2012.12004 |
[130] |
Compain, E., Poirier, S. & Drevillon, B. General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers. Appl. Opt. 38, 3490–3502 (1999). doi: 10.1364/AO.38.003490 |
[131] |
De Martino, A. et al. General methods for optimized design and calibration of Mueller polarimeters. Thin Solid Films 455-456, 112–119 (2004). doi: 10.1016/j.tsf.2003.12.052 |
[132] |
Marenko, V. & Molebnaya, T. Optimization of stokes polarimeters employing a measurement of 4intensities. Sov. J. Opt. Technol. 57, 452–455 (1990). |
[133] |
Ambirajan, A. & Look, D. C. Jr. Optimum angles for a Mueller matrix polarimeter. Proc. SPIE 2265, 314–326 (1994). doi: 10.1117/12.186680 |
[134] |
Ambirajan, A. & Look, D. C. Jr. Optimum angles for a polarimeter: part Ⅰ. Opt. Eng. 34, 1651–1655 (1995). doi: 10.1117/12.202093 |
[135] |
Tyo, J. S. Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system. J. Opt. Soc. Am. A 15, 359–366 (1998). doi: 10.1364/JOSAA.15.000359 |
[136] |
Tyo, J. S. Relation between system optimization and systematic errors in Stokes vector polarimeters. Proc. SPIE 4481, 22–30 (2002). doi: 10.1117/12.452903 |
[137] |
Tyo, J. S. Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters. Opt. Lett. 25, 1198–1200 (2000). doi: 10.1364/OL.25.001198 |
[138] |
Azzam, R. M. A., Elminyawi, I. M. & El-Saba, A. M. General analysis and optimization of the four-detector photopolarimeter. J. Opt. Soc. Am. A 5, 681–689 (1988). doi: 10.1364/JOSAA.5.000681 |
[139] |
Tyo, J. S. Considerations in polarimeter design. Proc. SPIE 4133, 65–74 (2000). doi: 10.1117/12.406642 |
[140] |
Peinado, A. et al. Optimization and performance criteria of a Stokes polarimeter based on two variable retarders. Opt. Express 18, 9815–9830 (2010). doi: 10.1364/OE.18.009815 |
[141] |
Foreman, M. R., Favaro, A. & Aiello, A. Optimal frames for polarization state reconstruction. Phys. Rev. Lett. 115, 263901 (2015). doi: 10.1103/PhysRevLett.115.263901 |
[142] |
Foreman, M. R. & Goudail, F. On the equivalence of optimization metrics in Stokes polarimetry. Opt. Eng. 58, 082410 (2019). doi: 10.1117/1.OE.58.8.082410 |
[143] |
Twietmeyer, K. M. & Chipman, R. A. Optimization of Mueller matrix polarimeters in the presence of error sources. Opt. Express 16, 11589–11603 (2008). doi: 10.1364/OE.16.011589 |
[144] |
Beckley, A. M., Brown, T. G. & Alonso, M. A. Full Poincaré beams. Opt. Express 18, 10777–10785 (2010). doi: 10.1364/OE.18.010777 |
[145] |
Beckley, A. M. Polarimetry and Beam Apodization Using Stress-engineered Optical Elements. PhD thesis (University of Rochester, New York, 2012). |
[146] |
Dewage, A. A. G. & Brown, T. Interferometric polarimetry using full-Poincar‚ beams. Proc. SPIE 11701, 117010N (2021). doi: 10.1117/12.2582371 |
[147] |
Vella, A. & Alonso, M. A. Optimal birefringence distributions for imaging polarimetry. Opt. Express 27, 36799–36814 (2019). doi: 10.1364/OE.27.036799 |
[148] |
Vella, A. & Alonso, M. A. Chapter Seven—maximum likelihood estimation in the context of an optical measurement. Prog. Opt. 65, 231–311 (2020). doi: 10.1016/bs.po.2019.11.007 |
[149] |
Vella, A. J. Description and Applications of Space-variant Polarization States and Elements. PhD thesis. (University of Rochester, New York, 2018). |
[150] |
Ramkhalawon, R. D., Brown, T. G. & Alonso, M. A. Imaging the polarization of a light field. Opt. Express 21, 4106–4115 (2013). doi: 10.1364/OE.21.004106 |
[151] |
Zimmerman, B. G. & Brown, T. G. Star test image-sampling polarimeter. Opt. Express 24, 23154–23161 (2016). doi: 10.1364/OE.24.023154 |
[152] |
Chue-Sang, J. et al. Optical phantoms for biomedical polarimetry: a review. J. Biomed. Opt. 24, 030901 (2019). doi: 10.1117/1.JBO.24.3.030901 |
[153] |
Zhanghao, K. et al. Super-resolution dipole orientation mapping via polarization demodulation. Light. : Sci. Appl. 5, e16166 (2016). doi: 10.1038/lsa.2016.166 |
[154] |
Zhanghao, K. et al. Super-resolution fluorescence polarization microscopy. J. Innovative Opt. Health Sci. 11, 1730002 (2018). doi: 10.1142/S1793545817300026 |
[155] |
Chen, L. et al. Advances of super-resolution fluorescence polarization microscopy and its applications in life sciences. Comput. Struct. Biotechnol. J. 18, 2209–2216 (2020). doi: 10.1016/j.csbj.2020.06.038 |
[156] |
Wu, P. J. & Walsh, J. T. Jr. Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light. Lasers Surg. Med. 37, 396–406 (2005). doi: 10.1002/lsm.20242 |
[157] |
Macdonald, C. & Meglinski, I. Backscattering of circular polarized light from a disperse random medium influenced by optical clearing. Laser Phys. Lett. 8, 324–328 (2011). doi: 10.1002/lapl.201010133 |
[158] |
Qi, J. et al. Assessment of tissue polarimetric properties using Stokes polarimetric imaging with circularly polarized illumination. J. Biophotonics 11, e201700139 (2018). doi: 10.1002/jbio.201700139 |
[159] |
Kunnen, B. et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 8, 317–323 (2015). doi: 10.1002/jbio.201400104 |
[160] |
Xu, M. & Alfano, R. R. Circular polarization memory of light. Phys. Rev. E 72, 065601 (2005). doi: 10.1103/PhysRevE.72.065601 |
[161] |
Macdonald, C. M., Jacques, S. L. & Meglinski, I. V. Circular polarization memory in polydisperse scattering media. Phys. Rev. E 91, 033204 (2015). doi: 10.1103/PhysRevE.91.033204 |
[162] |
Wood, M. F. et al. Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. J. Biomed. Opt. 14, 014029 (2009). doi: 10.1117/1.3065545 |
[163] |
Wang, Y. et al. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt. 21, 071112 (2016). doi: 10.1117/1.JBO.21.7.071112 |
[164] |
Liu, T. et al. Distinguishing structural features between Crohn's disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophotonics 12, e201900151 (2019). doi: 10.1002/jbio.201900151 |
[165] |
Shen, Y. X. et al. Comparative study of the influence of imaging resolution on linear retardance parameters derived from the Mueller matrix. Biomed. Opt. Express 12, 211–225 (2021). doi: 10.1364/BOE.410989 |
[166] |
Pierangelo, A. et al. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt. 18, 046014 (2013). doi: 10.1117/1.JBO.18.4.046014 |
[167] |
Sun, M. H. et al. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5, 4223–4234 (2014). doi: 10.1364/BOE.5.004223 |
[168] |
Li, P. C. et al. Separating azimuthal orientation dependence in polarization measurements of anisotropic media. Opt. Express 26, 3791–3800 (2018). doi: 10.1364/OE.26.003791 |
[169] |
Gil, J. J. Invariant quantities of a Mueller matrix under rotation and retarder transformations. J. Optical Soc. Am. A 33, 52–58 (2016). doi: 10.1364/JOSAA.33.000052 |
[170] |
Iqbal, M. et al. Comparative study of Mueller matrix transformation and polar decomposition for optical characterization of turbid media. Optik 224, 165508 (2020). doi: 10.1016/j.ijleo.2020.165508 |
[171] |
Sun, T. et al. Distinguishing anisotropy orientations originated from scattering and birefringence of turbid media using Mueller matrix derived parameters. Opt. Lett. 43, 4092–4095 (2018). doi: 10.1364/OL.43.004092 |
[172] |
Khaliq, A. et al. Comparative study of 3 × 3 Mueller matrix transformation and polar decomposition. Opt. Commun. 485, 126756 (2021). doi: 10.1016/j.optcom.2021.126756 |
[173] |
Tariq, A. et al. Physically realizable space for the purity-depolarization plane for polarized light scattering media. Phys. Rev. Lett. 119, 033202 (2017). doi: 10.1103/PhysRevLett.119.033202 |
[174] |
Swami, M. K. et al. Polar decomposition of 3 × 3 Mueller matrix: a tool for quantitative tissue polarimetry. Opt. Express 14, 9324–9337 (2006). doi: 10.1364/OE.14.009324 |
[175] |
Wang, Y. F. et al. Study on the validity of 3 × 3 Mueller matrix decomposition. J. Biomed. Opt. 20, 065003 (2015). doi: 10.1117/1.JBO.20.6.065003 |
[176] |
Morio, J. & Goudail, F. Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices. Opt. Lett. 29, 2234–2236 (2004). doi: 10.1364/OL.29.002234 |
[177] |
Ghosh, N., Wood, M. F. G. & Vitkin, I. A. Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues. Opt. Commun. 283, 1200–1208 (2010). doi: 10.1016/j.optcom.2009.10.111 |
[178] |
Li, P. C. et al. Analysis of tissue microstructure with Mueller microscopy: logarithmic decomposition and Monte Carlo modeling. J. Biomed. Opt. 25, 015002 (2020). doi: 10.1117/1.JBO.25.1.015002 |
[179] |
Li, P. C. et al. Characteristic Mueller matrices for direct assessment of the breaking of symmetries. Opt. Lett. 45, 706–709 (2020). doi: 10.1364/OL.375543 |
[180] |
Vizet, J. et al. In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci. Rep. 7, 2471 (2017). doi: 10.1038/s41598-017-02645-9 |
[181] |
Zhanghao, K. et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat. Commun. 11, 5890 (2020). doi: 10.1038/s41467-020-19747-0 |
[182] |
Zhanghao, K. et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat. Commun. 10, 4694 (2019). doi: 10.1038/s41467-019-12681-w |
[183] |
Spandana, K. U., Mahato, K. K. & Mazumder, N. Polarization-resolved Stokes–Mueller imaging: a review of technology and applications. Lasers Med. Sci. 34, 1283–1293 (2019). doi: 10.1007/s10103-019-02752-1 |
[184] |
Yang, B. et al. Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomed. Opt. Express 6, 1520–1533 (2015). doi: 10.1364/BOE.6.001520 |
[185] |
Clancy, N. T. et al. Polarised stereo endoscope and narrowband detection for minimal access surgery. Biomed. Opt. Express 5, 4108–4117 (2014). doi: 10.1364/BOE.5.004108 |
[186] |
Manhas, S. et al. Demonstration of full 4 × 4 Mueller polarimetry through an optical fiber for endoscopic applications. Opt. Express 23, 3047–3054 (2015). doi: 10.1364/OE.23.003047 |
[187] |
Wood, T. C. & Elson, D. S. Polarization response measurement and simulation of rigid endoscopes. Biomed. Opt. Express 1, 463–470 (2010). doi: 10.1364/BOE.1.000463 |
[188] |
Vizet, J. et al. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method. J. Biomed. Opt. 21, 071106 (2016). doi: 10.1117/1.JBO.21.7.071106 |
[189] |
Rivet, S., Bradu, A. & Podoleanu, A. 70 kHz full 4 x 4 Mueller polarimeter and simultaneous fiber calibration for endoscopic applications. Opt. Express 23, 23768–23786 (2015). doi: 10.1364/OE.23.023768 |
[190] |
Forward, S. et al. Flexible polarimetric probe for 3 × 3 Mueller matrix measurements of biological tissue. Sci. Rep. 7, 11958 (2017). doi: 10.1038/s41598-017-12099-8 |
[191] |
Backman, V. et al. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999). doi: 10.1109/2944.796325 |
[192] |
Chan, D. et al. In vivo spectroscopic ellipsometry measurements on human skin. J. Biomed. Opt. 12, 014023 (2007). doi: 10.1117/1.2435703 |
[193] |
Banerjee, P. et al. Probing the fractal pattern and organization of Bacillus thuringiensis bacteria colonies growing under different conditions using quantitative spectral light scattering polarimetry. J. Biomed. Opt. 18, 035003 (2013). doi: 10.1117/1.JBO.18.3.035003 |
[194] |
Soni, J. et al. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system. Opt. Express 21, 15475–15489 (2013). doi: 10.1364/OE.21.015475 |
[195] |
Jagtap, J. et al. Quantitative Mueller matrix fluorescence spectroscopy for precancer detection. Opt. Lett. 39, 243–246 (2014). doi: 10.1364/OL.39.000243 |
[196] |
Satapathi, S., Soni, J. & Ghosh, N. Fluorescent Mueller matrix analysis of a highly scattering turbid media. Appl. Phys. Lett. 104, 131902 (2014). doi: 10.1063/1.4869475 |
[197] |
Huse, N., Schöenle, A. & Hell, S. W. Z-polarized confocal microscopy. J. Biomed. Opt. 6, 273–276 (2001). doi: 10.1117/1.1382610 |
[198] |
Lim, N. S. J. et al. Early detection of biomolecular changes in disrupted porcine cartilage using polarized Raman spectroscopy. J. Biomed. Opt. 16, 017003 (2011). doi: 10.1117/1.3528006 |
[199] |
Ahlawat, S. et al. Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells. J. Biomed. Opt. 19, 087002 (2014). doi: 10.1117/1.JBO.19.8.087002 |
[200] |
Chan, K. H. et al. Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography. J. Biophotonics 8, 36–45 (2015). doi: 10.1002/jbio.201300137 |
[201] |
De Boer, J. F. & Milner, T. E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7, 359–371 (2002). doi: 10.1117/1.1483879 |
[202] |
Fan, C. M. & Yao, G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomed. Opt. Express 4, 460–465 (2013). doi: 10.1364/BOE.4.000460 |
[203] |
Gladkova, N. et al. Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography. J. Biophotonics 6, 321–329 (2013). doi: 10.1002/jbio.201200059 |
[204] |
Hitzenberger, C. K. et al. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9, 780–790 (2001). doi: 10.1364/OE.9.000780 |
[205] |
Hong, Y. J. et al. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction. Biomed. Opt. Express 6, 225–243 (2015). doi: 10.1364/BOE.6.000225 |
[206] |
Jiao, S. L., Yao, G. & Wang, L. V. Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Opt. 39, 6318–6324 (2000). doi: 10.1364/AO.39.006318 |
[207] |
Kuranov, R. V. et al. Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Opt. Express 10, 707–713 (2002). doi: 10.1364/OE.10.000707 |
[208] |
Lee, R. C. et al. Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography. Biomed. Opt. Express 5, 2950–2962 (2014). doi: 10.1364/BOE.5.002950 |
[209] |
Popescu, D. P. et al. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images. J. Biomed. Opt. 13, 054053 (2008). doi: 10.1117/1.2992129 |
[210] |
Sugita, M. et al. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT. Biomed. Opt. Express 6, 1030–1054 (2015). doi: 10.1364/BOE.6.001030 |
[211] |
Ugryumova, N. et al. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography. J. Phys. D: Appl. Phys. 38, 2612–2619 (2005). doi: 10.1088/0022-3727/38/15/012 |
[212] |
Vitkin, A., Ghosh, N. & De Martino, A. Tissue polarimetry. Photonics. : Sci. Found. Technol. Appl. 4, 239–321 (2015). |
[213] |
Tuchin, V. V., Wang, L. V. & Zimnyakov, D. A. Optical Polarization in Biomedical Applications (Springer, 2006). |
[214] |
Wang, L. V., Coté, G. L. & Jacques, S. L. Special section guest editorial: tissue polarimetry. J. Biomed. Opt. 7, 278 (2002). doi: 10.1117/1.1489434 |
[215] |
Wang, L. V. & Wu, H. I. Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2009). |
[216] |
Wang, S. & Larin, K. V. Optical coherence elastography for tissue characterization: a review. J. Biophotonics 8, 279–302 (2015). doi: 10.1002/jbio.201400108 |
[217] |
Yamanari, M. et al. Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo. Biomed. Opt. Express 5, 1391–1402 (2014). doi: 10.1364/BOE.5.001391 |
[218] |
Yao, G. & Wang, L. V. Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24, 537–539 (1999). doi: 10.1364/OL.24.000537 |
[219] |
Milione, G. et al. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. J. Opt. 17, 035617 (2015). doi: 10.1088/2040-8978/17/3/035617 |
[220] |
Mansfield, J. C. et al. Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. J. Biomed. Opt. 13, 044020 (2008). doi: 10.1117/1.2950318 |
[221] |
Tanaka, Y. et al. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin. Biomed. Opt. Express 5, 1099–1113 (2014). doi: 10.1364/BOE.5.001099 |
[222] |
DeWalt, E. L. et al. Polarization-modulated second harmonic generation ellipsometric microscopy at video rate. Anal. Chem. 86, 8448–8456 (2014). doi: 10.1021/ac502124v |
[223] |
Pavone, F. S. & Campagnola, P. J. Second Harmonic Generation Imaging (CRC Press, 2013). |
[224] |
Brasselet, S. Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv. Opt. Photonics 3, 205–271 (2011). doi: 10.1364/AOP.3.000205 |
[225] |
Kapsokalyvas, D. et al. In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy. Biomed. Opt. Express 5, 2405–2419 (2014). doi: 10.1364/BOE.5.002405 |
[226] |
Golaraei, A. et al. Characterization of collagen in non-small cell lung carcinoma with second harmonic polarization microscopy. Biomed. Opt. Express 5, 3562–3567 (2014). doi: 10.1364/BOE.5.003562 |
[227] |
Daly, S. M. & Leahy, M. J. 'Go with the flow': a review of methods and advancements in blood flow imaging. J. Biophotonics 6, 217–255 (2013). doi: 10.1002/jbio.201200071 |
[228] |
Wolf, E. Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007). |
[229] |
Abrahamsson, S. et al. MultiFocus polarization microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously. Opt. Express 23, 7734–7754 (2015). doi: 10.1364/OE.23.007734 |
[230] |
Chen, D. S. et al. Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models. J. Biomed. Opt. 21, 081209 (2016). doi: 10.1117/1.JBO.21.8.081209 |
[231] |
Wang, Y. et al. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron 79, 8–15 (2015). doi: 10.1016/j.micron.2015.07.014 |
[232] |
Hafi, N. et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nat. Methods 11, 579–584 (2014). doi: 10.1038/nmeth.2919 |
[233] |
Cruz, C. A. V. et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc. Natl Acad. Sci. USA 113, E820–E828 (2016). doi: 10.1073/pnas.1516811113 |
[234] |
Kampmann, M. et al. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. Nat. Struct. Mol. Biol. 18, 643–649 (2011). doi: 10.1038/nsmb.2056 |
[235] |
Sase, I. et al. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl Acad. Sci. USA 94, 5646–5650 (1997). doi: 10.1073/pnas.94.11.5646 |
[236] |
Forkey, J. N. et al. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003). doi: 10.1038/nature01529 |
[237] |
Sosa, H. et al. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol. 8, 540–544 (2001). doi: 10.1038/88611 |
[238] |
DeMay, B. S. et al. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals. J. Cell Biol. 193, 1065–1081 (2011). doi: 10.1083/jcb.201012143 |
[239] |
DeMay, B. S. et al. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophys. J. 101, 985–994 (2011). doi: 10.1016/j.bpj.2011.07.008 |
[240] |
Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557–573 (1979). doi: 10.1016/S0006-3495(79)85271-6 |
[241] |
Schütz, G. J., Schindler, H. & Schmidt, T. Imaging single-molecule dichroism. Opt. Lett. 22, 651–653 (1997). doi: 10.1364/OL.22.000651 |
[242] |
Du, E. et al. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt. 19, 076013 (2014). doi: 10.1117/1.JBO.19.7.076013 |
[243] |
Pierangelo, A. et al. Polarimetric imaging of uterine cervix: a case study. Opt. Express 21, 14120–14130 (2013). doi: 10.1364/OE.21.014120 |
[244] |
Rehbinder, J. et al. Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation. J. Biomed. Opt. 21, 071113 (2016). doi: 10.1117/1.JBO.21.7.071113 |
[245] |
Shukla, P. & Pradhan, A. Mueller decomposition images for cervical tissue: potential for discriminating normal and dysplastic states. Opt. Express 17, 1600–1609 (2009). doi: 10.1364/OE.17.001600 |
[246] |
Chue-Sang, J. et al. Use of combined polarization-sensitive optical coherence tomography and Mueller matrix imaging for the polarimetric characterization of excised biological tissue. J. Biomed. Opt. 21, 071109 (2016). doi: 10.1117/1.JBO.21.7.071109 |
[247] |
Novikova, T. et al. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl. Phys. Lett. 102, 241103 (2013). doi: 10.1063/1.4811414 |
[248] |
Ahmad, I. et al. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt. 20, 056012 (2015). doi: 10.1117/1.JBO.20.5.056012 |
[249] |
Pierangelo, A. et al. Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt. Express 19, 1582–1593 (2011). doi: 10.1364/OE.19.001582 |
[250] |
Pierangelo, A. et al. Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging. J. Biomed. Opt. 17, 066009 (2012). doi: 10.1117/1.JBO.17.6.066009 |
[251] |
Dubreuil, M. et al. Mueller matrix polarimetry for improved liver fibrosis diagnosis. Opt. Lett. 37, 1061–1063 (2012). doi: 10.1364/OL.37.001061 |
[252] |
Wang, W. F. et al. Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples. J. Biomed. Opt. 19, 046020 (2014). doi: 10.1117/1.JBO.19.4.046020 |
[253] |
Borovkova, M. et al. Evaluating β-amyloidosis progression in Alzheimer's disease with Mueller polarimetry. Biomed. Opt. Express 11, 4509–4519 (2020). doi: 10.1364/BOE.396294 |
[254] |
Alali, S. et al. Assessment of local structural disorders of the bladder wall in partial bladder outlet obstruction using polarized light imaging. Biomed. Opt. Express 5, 621–629 (2014). doi: 10.1364/BOE.5.000621 |
[255] |
Backman, V. et al. Detection of preinvasive cancer cells. Nature 406, 35–36 (2000). doi: 10.1038/35017638 |
[256] |
Qi, J. & Elson, D. S. A high definition Mueller polarimetric endoscope for tissue characterisation. Sci. Rep. 6, 25953 (2016). doi: 10.1038/srep25953 |
[257] |
Gan, Y. & Fleming, C. P. Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography. Biomed. Opt. Express 4, 2150–2165 (2013). doi: 10.1364/BOE.4.002150 |
[258] |
Pham, H. T. T. et al. Optical parameters of human blood plasma, collagen, and calfskin based on the Stokes–Mueller technique. Appl. Opt. 57, 4353–4359 (2018). doi: 10.1364/AO.57.004353 |
[259] |
Lu, R. W. et al. A polarization-sensitive light field imager for multi-channel angular spectroscopy of light scattering in biological tissues. Quant. Imaging Med. Surg. 5, 1–8 (2015). doi: 10.3978/j.issn.2223-4292.2014.11.01 |
[260] |
Ghosh, N. et al. Mueller matrix decomposition for polarized light assessment of biological tissues. J. Biophotonics 2, 145–156 (2009). doi: 10.1002/jbio.200810040 |
[261] |
Wood, M. F. G. et al. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. J. Biomed. Opt. 15, 047009 (2010). doi: 10.1117/1.3469844 |
[262] |
Ahmad, I. et al. Polarimetric assessment of healthy and radiofrequency ablated porcine myocardial tissue. J. Biophotonics 9, 750–759 (2016). doi: 10.1002/jbio.201500184 |
[263] |
He, H. H. et al. Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging. J. Biophotonics 10, 664–673 (2017). doi: 10.1002/jbio.201600008 |
[264] |
Sugita, S. & Matsumoto, T. Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues. J. Biomech. 46, 1403–1407 (2013). doi: 10.1016/j.jbiomech.2013.02.003 |
[265] |
Saytashev, I. et al. Self validating Mueller matrix Micro–Mesoscope (SAMMM) for the characterization of biological media. Opt. Lett. 45, 2168–2171 (2020). doi: 10.1364/OL.387747 |
[266] |
Chen, Z. H. et al. A collinear reflection Mueller matrix microscope for backscattering Mueller matrix imaging. Opt. Lasers Eng. 129, 106055 (2020). doi: 10.1016/j.optlaseng.2020.106055 |
[267] |
Gonzalez, M. et al. Design and implementation of a portable colposcope Mueller matrix polarimeter. J. Biomed. Opt. 25, 116006 (2020). |
[268] |
Zotter, S. et al. Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT. Investigative Ophthalmol. Vis. Sci. 54, 72–84 (2013). doi: 10.1167/iovs.12-10089 |
[269] |
Dong, Y. et al. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry. Sci. Rep. 7, 14702 (2017). doi: 10.1038/s41598-017-14804-z |
[270] |
Liu, X. Y. et al. Tissue-like phantoms for quantitative birefringence imaging. Biomed. Opt. Express 8, 4454–4465 (2017). doi: 10.1364/BOE.8.004454 |
[271] |
Swami, M. K. et al. Effect of gold nanoparticles on depolarization characteristics of Intralipid tissue phantom. Opt. Lett. 38, 2855–2857 (2013). doi: 10.1364/OL.38.002855 |
[272] |
Guo, Y. H. et al. Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media. J. Biomed. Opt. 19, 065001 (2014). doi: 10.1117/1.JBO.19.6.065001 |
[273] |
Li, X. P. et al. Polarimetric learning: a Siamese approach to learning distance metrics of algal Mueller matrix images. Appl. Opt. 57, 3829–3837 (2018). doi: 10.1364/AO.57.003829 |
[274] |
Heinrich, C. et al. Mueller polarimetric imaging of biological tissues: classification in a decision-theoretic framework. J. Opt. Soc. Am. A 35, 2046–2057 (2018). doi: 10.1364/JOSAA.35.002046 |
[275] |
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6 |
[276] |
Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437–1443 (2017). doi: 10.1364/OPTICA.4.001437 |
[277] |
He, C. et al. Vectorial adaptive optics: correction of polarization and phase. in Adaptive Optics and Wavefront Control for Biological Systems VI. Vol. 11248 (eds Bifano, T. G., Gigan, S., & Ji, N. ) (International Society for Optics and Photonics, 2020). https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11248/1124808/Vectorial-adaptive-opticscorrection-of-polarization-and-phase/10.1117/12.2547715.full?SSO=1. |
[278] |
Hu, Q. et al. Arbitrary vectorial state conversion using liquid crystal spatial light modulators. Opt. Commun. 459, 125028 (2020). doi: 10.1016/j.optcom.2019.125028 |
[279] |
Hu, Q., He, C. & Booth, M. J. Arbitrary complex retarders using a sequence of spatial light modulators as the basis for adaptive polarisation compensation. J. Opt. 23, 065602 (2021). doi: 10.1088/2040-8986/abed33 |
[280] |
Dai, Y. Y. et al. Active compensation of extrinsic polarization errors using adaptive optics. Opt. Express 27, 35797–35810 (2019). doi: 10.1364/OE.27.035797 |
[281] |
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839 |
[282] |
Dorrah, A. H. et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics 15, 287–296 (2021). doi: 10.1038/s41566-020-00750-2 |
[283] |
Pan, T. et al. Biophotonic probes for bio-detection and imaging. Light. : Sci. Appl. 10, 124 (2021). doi: 10.1038/s41377-021-00561-2 |
[284] |
Samim, M., Krouglov, S. & Barzda, V. Nonlinear Stokes-Mueller polarimetry. Phys. Rev. A 93, 013847 (2016). doi: 10.1103/PhysRevA.93.013847 |
[285] |
Kontenis, L. et al. in CLEO: Science and Innovations (Optical Society of America, 2016). |
[286] |
Okoro, C. Second-harmonic Generation-based Mueller Matrix Polarization Analysis Of Collagen-rich Tissues. PhD thesis (University of Illinois, Urbana-Champaign, Urbana, 2018). |
[287] |
Krouglov, S. & Barzda, V. Three-dimensional nonlinear Stokes–Mueller polarimetry. J. Opt. Soc. Am. B 36, 541–550 (2019). doi: 10.1364/JOSAB.36.000541 |
[288] |
Azzam, R. M. A. Arrangement of four photodetectors for measuring the state of polarization of light. Opt. Lett. 10, 309–311 (1985). doi: 10.1364/OL.10.000309 |
[289] |
Mehta, S. B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc. Natl Acad. Sci. USA 113, E6352–E6361 (2016). doi: 10.1073/pnas.1607674113 |