[1] Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009). doi: 10.1126/science.1177031
[2] Zhao, Y., Belkin, M. & Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012). doi: 10.1038/ncomms1877
[3] Kaschke, J. et al. A helical metamaterial for broadband circular polarization conversion. Adv. Opt. Mater. 3, 1411-1417 (2015). doi: 10.1002/adom.201500194
[4] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328-6333 (2012). doi: 10.1021/nl303445u
[5] Zhao, Y. & Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011). doi: 10.1103/PhysRevB.84.205428
[6] Zhao, Y. & Alù, A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett. 13, 1086-1091 (2013). doi: 10.1021/nl304392b
[7] Zhu, H. et al. Manipulating light polarizations with a hyperbolic metamaterial waveguide. Opt. Lett. 40, 4595-4598 (2015). doi: 10.1364/OL.40.004595
[8] Ding, F. et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111-4119 (2015). doi: 10.1021/acsnano.5b00218
[9] Drezet, A., Genet, C. & Ebbesen, T. W. Miniature plasmonic wave plates. Phys. Rev. Lett. 101, 043902 (2008). doi: 10.1103/PhysRevLett.101.043902
[10] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[11] Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009). doi: 10.1103/PhysRevB.79.035407
[12] Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783-787 (2010). doi: 10.1038/nnano.2010.209
[13] Schäferling, M. et al. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012). http://cn.bing.com/academic/profile?id=ad147b6cf2eeca3721be830ffe3f73d3&encoded=0&v=paper_preview&mkt=zh-cn
[14] Cui, Y. H. et al. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 14, 1021-1025 (2014). doi: 10.1021/nl404572u
[15] Decker, M. et al. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35, 1593-1595 (2010). doi: 10.1364/OL.35.001593
[16] Ren, M. X. et al. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun. 3, 833 (2012). doi: 10.1038/ncomms1805
[17] Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005). doi: 10.1103/PhysRevLett.95.227401
[18] Rogacheva, A. V. et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006). doi: 10.1103/PhysRevLett.97.177401
[19] Li, L. et al. Plasmonic polarization generator in well-routed beaming. Light.: Sci. Appl. 4, e330 (2015). doi: 10.1038/lsa.2015.103
[20] Garoli, D. et al. Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip. Nano Lett. 16, 6636-6643 (2016). doi: 10.1021/acs.nanolett.6b03359
[21] Khoo, E. H., Li, E. P. & Crozier, K. B. Plasmonic wave plate based on subwavelength nanoslits. Opt. Lett. 36, 2498-2500 (2011). doi: 10.1364/OL.36.002498
[22] Eismann, J. S., Neugebauer, M. & Banzer, P. Exciting a chiral dipole moment in an achiral nanostructure. Optica 5, 954-959 (2018). doi: 10.1364/OPTICA.5.000954
[23] O'Connor, D. et al. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014). doi: 10.1038/ncomms6327
[24] Rodríguez-Fortuño, F. J. et al. Resolving light handedness with an on-chip silicon microdisk. ACS Photonics 1, 762-767 (2014). doi: 10.1021/ph500084b
[25] Rodríguez-Fortuño, F. J. et al. Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna. Laser Photonics Rev. 8, L27-L31 (2014). doi: 10.1002/lpor.201300184
[26] Bliokh, K. Y. et al. Spin-orbit interactions of light. Nat. Photonics 9, 796-808 (2015). doi: 10.1038/nphoton.2015.201
[27] Balanis, C. A. Antenna Theory: Analysis and Design 2nd edn (John Wiley & Sons, New York, 1997).
[28] Schäferling, M. et al. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics 1, 530-537 (2014). http://cn.bing.com/academic/profile?id=05eee46e02c46da961a7cf86e7168432&encoded=0&v=paper_preview&mkt=zh-cn
[29] Woźniak, P. et al. Chiroptical response of a single plasmonic nanohelix. Opt. Express 26, 19275-19293 (2018). doi: 10.1364/OE.26.019275
[30] Passaseo, A. et al. Materials and 3D designs of helix nanostructures for chirality at optical frequencies. Adv. Opt. Mater. 5, 1601079 (2017). doi: 10.1002/adom.201601079
[31] Kraus, J. D. Antennas and Wave Propagation 4th edn. (Tata McGraw Hill Education Private Limited, 2010).
[32] Novotny, L. & Hafner, C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E 50, 4094-4106 (1994). doi: 10.1103/PhysRevE.50.4094
[33] Esposito, M. et al. Programmable extreme chirality in the visible by helix-shaped metamaterial platform. Nano Lett. 16, 5823-5828 (2016). doi: 10.1021/acs.nanolett.6b02583