[1] George, N. C., Denault, K. A. & Seshadri, R. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013). doi: 10.1146/annurev-matsci-073012-125702
[2] Tanner, P. A. et al. Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics. Chem. Soc. Rev. 47, 5234–5265 (2018). doi: 10.1039/C8CS00002F
[3] Brites, C. D. S., Balabhadra, S. & Carlos, L. D. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 7, 1801239 (2019). doi: 10.1002/adom.201801239
[4] Krämer, K. W. et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004). doi: 10.1021/cm031124o
[5] Zhou, B. et al. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015). doi: 10.1038/nnano.2015.251
[6] Gao, G. J. et al. Up-conversion fluorescent labels for plastic recycling: a review. Adv. Sustain. Syst. 1, 1600033 (2017). doi: 10.1002/adsu.201600033
[7] Wegh, R. T. et al. Visible quantum cutting in LiGdF4: Eu3+ through downconversion. Science 283, 663–666 (1999). doi: 10.1126/science.283.5402.663
[8] Vergeer, P. et al. Quantum cutting by cooperative energy transfer in YbxY1–xPO4: Tb3+. Phys. Rev. B 71, 014119 (2005). doi: 10.1103/PhysRevB.71.014119
[9] Smet, P. F., Parmentier, A. B. & Poelman, D. Selecting conversion phosphors for white light-emitting diodes. J. Electrochem. Soc. 158, R37–R54 (2011). doi: 10.1149/1.3568524
[10] Richards, B. S. Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006). doi: 10.1016/j.solmat.2005.07.001
[11] van der Ende, B. M., Aarts, L. & Meijerink, A. Near-infrared quantum cutting for photovoltaics. Adv. Mater. 21, 3073–3077 (2009). doi: 10.1002/adma.200802220
[12] Huang, X. Y. et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013). doi: 10.1039/C2CS35288E
[13] Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). doi: 10.1063/1.1736034
[14] Trupke, T., Green, M. A. & Würfel, P. Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002). doi: 10.1063/1.1492021
[15] Zhang, Q. Y. et al. Concentration-dependent near-infrared quantum cutting in GdBO3: Tb3+, Yb3+ nanophosphors. Appl. Phys. Lett. 90, 061914 (2007). doi: 10.1063/1.2472195
[16] Ueda, J. & Tanabe, S. Visible to near infrared conversion in Ce3+–Yb3+ co-doped YAG ceramics. J. Appl. Phys. 106, 043101 (2009). doi: 10.1063/1.3194310
[17] Yu, D. C. et al. Insights into the energy transfer mechanism in Ce3+–Yb3+ codoped YAG phosphors. Phys. Rev. B 90, 165126 (2014). doi: 10.1103/PhysRevB.90.165126
[18] Zhou, L. et al. Spectral properties and energy transfer between Ce3+ and Yb3+ in the Ca3Sc2Si3O12 host: is it an electron transfer mechanism? J. Phys. Chem. A 120, 5539–5548 (2016). doi: 10.1021/acs.jpca.6b04641
[19] Xie, L. C., Wang, Y. H. & Zhang, H. J. Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer. Appl. Phys. Lett. 94, 061905 (2009). doi: 10.1063/1.3078823
[20] Zheng, W. et al. Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4: Tm3+, Yb3+ phosphors. Phys. Chem. Chem. Phys. 14, 6974–6980 (2012). doi: 10.1039/c2cp24044k
[21] Jiang, G. C. et al. Broadband downconversion in YVO4: Tm3+, Yb3+ phosphors. J. Rare Earths 31, 27–31 (2013). doi: 10.1016/S1002-0721(12)60229-4
[22] Fu, L. et al. Efficient near-infrared quantum cutting in Tm3+/Yb3+ codoped LiYF4 single crystals for solar photovoltaic. Chin. J. Chem. Phys. 28, 73–78 (2015). doi: 10.1063/1674-0068/28/cjcp1407115
[23] Lisiecki, R. et al. Contribution of energy transfer processes to excitation and relaxation of Yb3+ ions in Gd3(Al, Ga)5O12: RE3+, Yb3+ (RE3+ = Tm3+, Er3+, Ho3+, Pr3+). J. Lumin. 211, 54–61 (2019). doi: 10.1016/j.jlumin.2019.03.019
[24] van Wijngaarden, J. T. et al. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple. Phys. Rev. B 81, 155112 (2010). doi: 10.1103/PhysRevB.81.155112
[25] Xu, Y. S. et al. Efficient near-infrared down-conversion in Pr3+–Yb3+ codoped glasses and glass ceramics containing LaF3 nanocrystals. J. Phys. Chem. C. 115, 13056–13062 (2011). doi: 10.1021/jp201503v
[26] De Jong, M., Meijerink, A. & Rabouw, F. T. Non-poissonian photon statistics from macroscopic photon cutting materials. Nat. Commun. 8, 15537 (2017). doi: 10.1038/ncomms15537
[27] Auzel, F. On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials. J. Lumin. 93, 129–135 (2001). doi: 10.1016/S0022-2313(01)00183-1
[28] van Dijk, J. M. F. & Schuurmans, M. F. H. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions. J. Chem. Phys. 78, 5317–5323 (1983). doi: 10.1063/1.445485
[29] Guyot, Y. et al. Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions. Optical Mater. 5, 127–136 (1996). doi: 10.1016/0925-3467(95)00045-3
[30] Fei, B. J. et al. Spectroscopic properties and laser performance of Tm: YAG ceramics. J. Lumin. 142, 189–195 (2013). doi: 10.1016/j.jlumin.2013.02.015
[31] Ju, M. et al. Deciphering the microstructure and energy-level splitting of Tm3+-doped yttrium aluminum garnet. Inorg. Chem. 58, 1058–1066 (2019). doi: 10.1021/acs.inorgchem.8b02009
[32] Yadav, R. et al. Observation of multi-mode: upconversion, downshifting and quantum-cutting emission in Tm3+/Yb3+ co-doped Y2O3 phosphor. Chem. Phys. Lett. 599, 122–126 (2014). doi: 10.1016/j.cplett.2014.03.025
[33] Denning, J. H. & Boss, S. D. The vibrational spectra and structures of some rare-earth borates. Spectrochim. Acta A Mol. Spectrosc. 28, 1775–1785 (1972). doi: 10.1016/0584-8539(72)80148-X
[34] Boyer, D., Bertrand, G. & Mahiou, R. A spectroscopic study of the vaterite form YBO3: Eu3+ processed by sol-gel technique. J. Lumin. 104, 229–237 (2003). doi: 10.1016/S0022-2313(03)00077-2
[35] Koningstein, J. A. & Mortensen, O. S. Laser-excited phonon raman spectrum of garnets. J. Mol. Spectrosc. 27, 343–350 (1968). doi: 10.1016/0022-2852(68)90043-X
[36] Slack, G. A. et al. Optical absorption of Y3Al5O12 from 10- to 55 000-cm−1 wave numbers. Phys. Rev. J. Arch. 177, 1308–1314 (1969). doi: 10.1103/PhysRev.177.1308
[37] Repelin, Y. et al. Vibrational spectroscopy of the C-form of yttrium sesquioxide. J. Solid State Chem. 118, 163–169 (1995). doi: 10.1006/jssc.1995.1326
[38] Suyver, J. F. et al. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 117, 1–12 (2006). doi: 10.1016/j.jlumin.2005.03.011
[39] Chen, X. B. et al. Multiphoton near-infrared quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor. Opt. Express 21, A829–A840 (2013). doi: 10.1364/OE.21.00A829
[40] Yu, D. C. et al. Multi-photon quantum cutting in Gd2O2S: Tm3+ to enhance the photo-response of solar cells. Light. Sci. Appl. 4, e344 (2015). doi: 10.1038/lsa.2015.117
[41] Rabouw, F. T. et al. Photonic effects on the Förster resonance energy transfer efficiency. Nat. Commun. 5, 3610 (2014). doi: 10.1038/ncomms4610
[42] Thomas, J. T. et al. Optical spectroscopy of Tm3+: YAG transparent ceramics. J. Phys. D Appl. Phys. 46, 375301 (2013). doi: 10.1088/0022-3727/46/37/375301
[43] Dodson, C. M. et al. Magnetic dipole emission of Dy3+: Y2O3 and Tm3+: Y2O3 at near-infrared wavelengths. Optical Mater. Express 4, 2441–2450 (2014). doi: 10.1364/OME.4.002441
[44] Rabouw, F. T. & Meijerink, A. Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells. J. Phys. Chem. C. 119, 2364–2370 (2015).
[45] Henderson, B. & Imbusch, G. F. Optical Spectroscopy of Inorganic Solids. (Oxford Univ. Press, Oxford, 2006).
[46] Teitelboim, A. et al. Energy transfer networks within upconverting nanoparticles are complex systems with collective, robust, and history-dependent dynamics. J. Phys. Chem. C 123, 2678–2689 (2019). doi: 10.1021/acs.jpcc.9b00161