[1] Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 11, 315–321 (2017). doi: 10.1038/nphoton.2017.43
[2] Liu, J. Y. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 31, 1901644 (2019).
[3] Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9, 444–449 (2015). doi: 10.1038/nphoton.2015.82
[4] Wei, H. T. et al. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017). doi: 10.1038/nmat4927
[5] Shrestha, S. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 11, 436–440 (2017). doi: 10.1038/nphoton.2017.94
[6] Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10, 585–589 (2016). doi: 10.1038/nphoton.2016.139
[7] Zheng, Z. L. et al. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detect. Associated Equip. 850, 12–17 (2017). doi: 10.1016/j.nima.2017.01.033
[8] Winslow, L. & Simpson, R. Characterizing quantum-dot-doped liquid scintillator for applications to neutrino detectors. J. Instrum. 7, P07010 (2012).
[9] Bungau, A. et al. Proposal for an electron antineutrino disappearance search using high-rate 8Li production and decay. Phys. Rev. Lett. 109, 141802 (2012). doi: 10.1103/PhysRevLett.109.141802
[10] Marchi, T. et al. Optical properties and pulse shape discrimination in siloxane-based scintillation detectors. Sci. Rep. 9, 9154 (2019). doi: 10.1038/s41598-019-45307-8
[11] Cao, F. et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 14, 5183–5193 (2020). doi: 10.1021/acsnano.9b06114
[12] Wang, C. Y. et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime. J. Eur. Ceram. Soc. 40, 2234–2238 (2020). doi: 10.1016/j.jeurceramsoc.2020.01.016
[13] Xu, Q. et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale 12, 9727–9732 (2020). doi: 10.1039/D0NR00772B
[14] Zhu, W. J. et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light.: Sci. Appl. 9, 112 (2020). doi: 10.1038/s41377-020-00353-0
[15] Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017). doi: 10.1038/nature24032
[16] Wei, H. T. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333–339 (2016). doi: 10.1038/nphoton.2016.41
[17] Thirimanne, H. M. et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9, 2926 (2018). doi: 10.1038/s41467-018-05301-6
[18] Wei, H. T. & Huang, J. S. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019). doi: 10.1038/s41467-019-08981-w
[19] Zhang, Y. H. et al. Metal Halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 13, 2520–2525 (2019). doi: 10.1021/acsnano.8b09484
[20] Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018). doi: 10.1038/nature25147
[21] Hu, F. R. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015). doi: 10.1021/acsnano.5b05769
[22] Heo, J. H. et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 30, e1801743 (2018). doi: 10.1002/adma.201801743
[23] Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). doi: 10.1038/s41586-018-0451-1
[24] Yang, P. et al. Effect of humidity on scintillation performance in Na and Tl activated CsI Crystals. IEEE Trans. Nucl. Sci. 61, 1024–1031 (2104).
[25] Yasuda, R., Katagiri, M. & Matsubayashi, M. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detect. Associated Equip. 680, 139–144 (2012). doi: 10.1016/j.nima.2012.03.035
[26] Shekhirev, M. et al. Synthesis of cesium lead halide perovskite quantum dots. J. Chem. Educ. 94, 1150–1156 (2017). doi: 10.1021/acs.jchemed.7b00144
[27] Wang, D. et al. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 8, 11565–11570 (2016). doi: 10.1039/C6NR01915C
[28] Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). doi: 10.1126/science.aag2700
[29] Baranov, D. et al. Investigation into the photoluminescence red shift in cesium lead bromide nanocrystal superlattices. J. Phys. Chem. Lett. 10, 655–660 (2019). doi: 10.1021/acs.jpclett.9b00178
[30] Ai, B. et al. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. Phys. Chem. Chem. Phys. 19, 17349–17355 (2017). doi: 10.1039/C7CP02482G
[31] Zhang, Y. W. et al. Multicolored mixed-organic-cation perovskite quantum dots (FAxMA1−xPbX3, X=Br and I) for white light-emitting diodes. Ind. Eng. Chem. Res. 56, 10053–10059 (2017). doi: 10.1021/acs.iecr.7b02309
[32] Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013). doi: 10.1021/cg400645t
[33] Rodnyi, P. A. Physical Processes in Inorganic Scintillators. (CRC Press, Boca Raton, 1997).
[34] Yan, D. P. et al. Two-component molecular materials of 2, 5-diphenyloxazole exhibiting tunable ultraviolet/blue polarized emission, pump-enhanced luminescence, and mechanochromic response. Adv. Funct. Mater. 24, 587–594 (2014). doi: 10.1002/adfm.201302072
[35] Chakraborty, S., Harris, K. & Huang, M. B. Photoluminescence properties of polystyrene-hosted fluorophore thin films. AIP Adv. 6, 125113 (2016). doi: 10.1063/1.4972989
[36] Balter, S. et al. A pilot study exploring the possibility of establishing guidance levels in X-ray directed interventional procedures. Med. Phys. 35, 673–680 (2008). doi: 10.1118/1.2829868
[37] Pogson, E. M. et al. Comparing and evaluating the efficacy of the TOR18FG leeds test X-ray phantom for T-rays. Quant. Imaging Med. Surg. 3, 18–27 (2013).
[38] Boone, J. M. & Seibert, J. A. An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Med. Phys. 21, 1541–1545 (1994). doi: 10.1118/1.597264
[39] Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). doi: 10.1103/PhysRevB.54.11169
[40] Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Mater. Sci. 6, 15–50 (1996). doi: 10.1016/0927-0256(96)00008-0
[41] Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). doi: 10.1103/PhysRevB.50.17953
[42] Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). doi: 10.1063/1.1564060
[43] Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009). doi: 10.1021/jp810292n
[44] Frisch, M. J. et al. Gaussian 09, Revision E.01. (Gaussian, Inc., Wallingford CT, 2013).