[1] Zhao, M. et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced colour rendition. Light. Sci. Appl. 8, 38 (2019). doi: 10.1038/s41377-019-0148-8
[2] Huang, L. et al. A new reductive dl-mandelic acid loading approach for moisture-stable Mn4+ doped fluorides. Chem. Commun. 54, 11857–11860 (2018). doi: 10.1039/C8CC05850D
[3] Ji, X. Y. et al. Improving quantum efficiency and thermal stability in blue-emitting Ba2–xSrxSiO4: Ce3+ phosphor via solid solution. Chem. Mater. 30, 5137–5147 (2018). doi: 10.1021/acs.chemmater.8b01652
[4] Wang, L. et al. Ca1−xLixAl1−xSi1+xN3: Eu2+ solid solutions as broadband, colour-tunable and thermally robust red phosphors for superior colour rendition white light-emitting diodes. Light. Sci. Appl. 5, e16155 (2016). doi: 10.1038/lsa.2016.155
[5] Huang, L. et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1-xF6: xMn4+ for warm white light-emitting diodes. Chem. Mater. 28, 1495–1502 (2016). doi: 10.1021/acs.chemmater.5b04989
[6] Qiao, J. W. et al. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7: Eu phosphor. Angew. Chem. Int. Ed. 58, 11521–11526 (2019). doi: 10.1002/anie.201905787
[7] Tsai, Y. T. et al. Structural ordering and charge variation induced by cation substitution in (Sr, Ca)AlSiN3: Eu phosphor. J. Am. Chem. Soc. 137, 8936–8939 (2015). doi: 10.1021/jacs.5b06080
[8] Liu, Y. et al. High-performance and moisture-resistant red-emitting Cs2SiF6: Mn4+ for high-brightness LED backlighting. J. Mater. Chem. C. 7, 2401–2407 (2019). doi: 10.1039/C8TC06083E
[9] Li, S. X. et al. Achieving high quantum efficiency narrow-band β-Sialon: Eu2+ phosphors for high-brightness LCD backlights by reducing the Eu3+ luminescence killer. Chem. Mater. 30, 494–505 (2018). doi: 10.1021/acs.chemmater.7b04605
[10] Fang, M. H. et al. Pressure-controlled synthesis of high-performance SrLiAl3N4: Eu2+ narrow-band red phosphors. J. Mater. Chem. C. 6, 10174–10178 (2018). doi: 10.1039/C8TC03025A
[11] Lin, C. C. et al. Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors. J. Am. Chem. Soc. 139, 11766–11770 (2017). doi: 10.1021/jacs.7b04338
[12] Huang, L. et al. Highly stable K2SiF6: Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs. ACS Appl. Mater. Interfaces 10, 18082–18092 (2018). doi: 10.1021/acsami.8b03893
[13] Senden, T., Van Dijk-Moes, R. J. A. & Meijerink, A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors. Light. Sci. Appl. 7, 8 (2018). doi: 10.1038/s41377-018-0013-1
[14] Chen, J. Y. et al. Site-dependent luminescence and thermal stability of Eu2+ doped Fluorophosphate toward white LEDs for plant growth. ACS Appl. Mater. Interfaces 8, 20856–20864 (2016). doi: 10.1021/acsami.6b06102
[15] Qiao, J. W. et al. Engineering of K3YSi2O7 to tune photoluminescence with selected activators and site occupancy. Chem. Mater. 31, 7770–7778 (2019). doi: 10.1021/acs.chemmater.9b02990
[16] Wen, D. W. et al. Anomalous orange light-emitting (Sr, Ba)2SiO4: Eu2+ phosphors for warm white LEDs. ACS Appl. Mater. Interfaces 8, 11615–11620 (2016). doi: 10.1021/acsami.6b02237
[17] Tang, Z. B., Zhang, G. Y. & Wang, Y. H. Design and development of a bluish-green luminescent material (K2HfSi3O9: Eu2+) with robust thermal stability for white light-emitting diodes. ACS Photonics 5, 3801–3813 (2018). doi: 10.1021/acsphotonics.8b00844
[18] Chen, H. & Wang, Y. H. Sr2LiScB4O10: Ce3+/Tb3+: a green-emitting phosphor with high energy transfer efficiency and stability for LEDs and FEDs. Inorg. Chem. 58, 7440–7452 (2019). doi: 10.1021/acs.inorgchem.9b00639
[19] Duke, A. C., Hariyani, S. & Brgoch, J. Ba3Y2B6O15: Ce3+—a high symmetry, narrow-emitting blue phosphor for wide-gamut white lighting. Chem. Mater. 30, 2668–2675 (2018). doi: 10.1021/acs.chemmater.8b00111
[20] Wang, Y. C. et al. A cerium doped scandate broad orange-red emission phosphor and its energy transfer-dependent concentration and thermal quenching character. Inorg. Chem. 57, 14542–14553 (2018). doi: 10.1021/acs.inorgchem.8b02001
[21] Li, J. H. et al. Layered structure produced nonconcentration quenching in a novel Eu3+-doped phosphor. Appl. Mater. Interfaces 10, 41479–41486 (2018). doi: 10.1021/acsami.8b13759
[22] Chen, Z. et al. Tunable yellow-red photoluminescence and persistent afterglow in phosphors Ca4LaO(BO3)3: Eu3+ and Ca4EuO(BO3)3. Inorg. Chem. 55, 11249–11257 (2016). doi: 10.1021/acs.inorgchem.6b01786
[23] Wei, R. F. et al. Tunable emission and energy transfer in single-phased Ba9Lu2Si6O24: Bi3+, Eu3+ for UV W-LEDs. J. Lumin. 197, 291–296 (2018). doi: 10.1016/j.jlumin.2018.01.033
[24] Li, G. H. et al. The non-concentration-quenching phosphor Ca3Eu2B4O12 for WLED application. Inorg. Chem. 59, 3894–3904 (2020). doi: 10.1021/acs.inorgchem.9b03565
[25] Wang, S. H. et al. A red phosphor LaSc3(BO3)4: Eu3+ with zero-thermal-quenching and high quantum efficiency for LEDs. Chem. Eng. J. 404, 125912 (2021). doi: 10.1016/j.cej.2020.125912
[26] Blasse, G. & Grabmaier, B. C. Radiative return to the ground state: emission. In: Luminescent Materials (eds Blasse, G. & Grabmaier, B. C. ) (Springer, Berlin, 1994), 41–44.
[27] Li, X. H. et al. Eu3+-activated Sr3ZnTa2O9 single-component white light phosphors: emission intensity enhancement and colour rendering improvement. J. Mater. Chem. C. 7, 2596–2603 (2019). doi: 10.1039/C9TC00159J
[28] Yang, N. et al. Delayed concentration quenching of luminescence caused by Eu3+-induced phase transition in LaSc3(BO3)4. Chem. Mater. 32, 6958–6967 (2020). doi: 10.1021/acs.chemmater.0c02203
[29] Zhang, J. et al. Tuning of emission by Eu3+ concentration in a pyrophosphate: the effect of local symmetry. Inorg. Chem. 59, 2241–2247 (2020). doi: 10.1021/acs.inorgchem.9b02949
[30] Zhang, X. T. et al. Study on the local structure and luminescence properties of a Y2Mg2Al2Si2O12: Eu3+ red phosphor for white-light-emitting diodes. Inorg. Chem. 59, 9927–9937 (2020). doi: 10.1021/acs.inorgchem.0c01095
[31] Zhang, Q., Wang, X. C. & Wang, Y. H. A novel germanate based red-emitting phosphor with high efficiency, high colour purity and thermal stability for white light-emitting diodes and field emission displays. Inorg. Chem. Front. 7, 1034–1045 (2020). doi: 10.1039/C9QI01428D
[32] Morrison, G. et al. Cs3RE(Ⅲ)Ge3O9 (RE = Pr, Nd, and Sm-Yb) and Cs8Tb(Ⅲ)2Tb(Ⅳ)Ge9O27: a rare example of a mixed-valent Tb(Ⅲ)/Tb(Ⅳ) oxide. Inorg. Chem. 58, 8702–8709 (2019). doi: 10.1021/acs.inorgchem.9b01033
[33] Strobel, P. et al. Ultra-narrow-band blue-emitting oxoberyllates AELi2[Be4O6]: Eu2+ (AE = Sr, Ba) paving the way to efficient RGB pc-LEDs. Angew. Chem. Int. Ed. 57, 8739–8743 (2018). doi: 10.1002/anie.201804721
[34] Ren, Z. H. et al. Mesopores induced zero thermal expansion in single-crystal ferroelectrics. Nat. Commun. 9, 1638 (2018). doi: 10.1038/s41467-018-04113-y
[35] Azuma, M. et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2, 347 (2011). doi: 10.1038/ncomms1361
[36] Miller, K. J. et al. Near-zero thermal expansion in In(HfMg)0.5Mo3O12. J. Am. Ceram. Soc. 96, 561–566 (2013). doi: 10.1111/jace.12085
[37] Hu, L. et al. Zero thermal expansion and ferromagnetism in cubic Sc1-xMxF3 (M = Ga, Fe) over a wide temperature range. J. Am. Ceram. Soc. 136, 13566–13569 (2014). http://www.ncbi.nlm.nih.gov/pubmed/25233253
[38] Liu, H. F. et al. Tailored phase transition temperature and negative thermal expansion of Sc-substituted Al2Mo3O12 synthesized by a co-precipitation method. Inorg. Chem. Front. 6, 1842–1850 (2019). http://pubs.rsc.org/en/content/articlelanding/2019/qi/c9qi00366e/unauth
[39] Wei, Y. et al. Strategies for designing antithermal-quenching red phosphors. Adv. Sci. 7, 1903060 (2020). doi: 10.1002/advs.201903060
[40] Wei, Y. et al. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light. Sci. Appl. 8, 15 (2019). doi: 10.1038/s41377-019-0126-1
[41] Zhang, Z. J. et al. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K2LnZr(PO4)3 (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region. Mater. Res. Bull. 48, 224–231 (2013). doi: 10.1016/j.materresbull.2012.10.053
[42] Blasse, G. Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 62, 207–211 (1986). doi: 10.1016/0022-4596(86)90233-1
[43] Du, F. P. et al. Luminescence and microstructures of Eu3+-doped Ca9LiGd2/3(PO4)7. Dalton Trans. 40, 11433–11440 (2011). doi: 10.1039/c1dt11075f
[44] Zhao, D. et al. Non-concentration quenching, good thermal stability and high quantum efficiency of K5Y(P2O7)2: Eu3+/Tb3+ phosphors with a novel two-dimensional layer structure. J. Mater. Chem. C. 7, 14264–14274 (2019). doi: 10.1039/C9TC04977K
[45] Liao, H. X. et al. Learning from a mineral structure toward an ultra-narrow-band blue-emitting silicate phosphor RbNa3(Li3SiO4)4: Eu2+. Angew. Chem. Int. Ed. 57, 11728–11731 (2018). doi: 10.1002/anie.201807087
[46] Wei, Y. et al. Highly efficient blue emission and superior thermal stability of BaAl12O19: Eu2+ phosphors based on highly symmetric crystal structure. Chem. Mater. 30, 2389–2399 (2018). doi: 10.1021/acs.chemmater.8b00464
[47] Zhang, J. et al. Fine-tunable self-activated luminescence in apatite-type (Ba, Sr)5(PO4)3Br and the defect process. Inorg. Chem. 57, 12354–12363 (2018). doi: 10.1021/acs.inorgchem.8b02105
[48] Du, P. P. et al. Sol-gel processing of Eu3+ doped Li6CaLa2Nb2O12 garnet for efficient and thermally stable red luminescence under near-ultraviolet/blue light excitation. Chem. Eng. J. 375, 121937 (2019). doi: 10.1016/j.cej.2019.121937
[49] Chen, J. et al. Thermal expansion properties of lanthanum-substituted lead titanate ceramics. J. Am. Ceram. Soc. 88, 1356–1358 (2005). doi: 10.1111/j.1551-2916.2005.00314.x
[50] Hou, Z. Y. et al. A green synthetic route to the highly efficient K2SiF6: Mn4+ narrow-band red phosphor for warm white light-emitting diodes. J. Mater. Chem. C. 6, 2741–2746 (2018). doi: 10.1039/C8TC00133B