[1] |
Zhou, C. L. et al. Direct mapping of attosecond electron dynamics. Nature Photonics 15, 216-221 (2021). |
[2] |
Peng, P., Marceau, C. & Villeneuve, D. M. Attosecond imaging of molecules using high harmonic spectroscopy. Nature Reviews Physics 1, 144-155 (2019). doi: 10.1038/s42254-018-0015-1 |
[3] |
Lei, H. et al. Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field. Nature Communications 13, 4080 (2022). doi: 10.1038/s41467-022-31824-0 |
[4] |
Yu, Z. et al. Anti-correlated plasma and THz pulse generation during two-color laser filamentation in air. Ultrafast Science 2022, 9853053 (2022). |
[5] |
Li, Z. -Z. et al. Super-stealth dicing of transparent solids with nanometric precision. Nature Photonics 18, 799-808 (2024). |
[6] |
Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Science & Applications 3, e149-e149 (2014). |
[7] |
Jiang, L. et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science & Applications 7, 17134-17134 (2018). |
[8] |
Nakhoul, A. & Colombier, J. P. Beyond the Microscale: Advances in Surface Nanopatterning by Laser‐Driven Self‐Organization. Laser & Photonics Reviews 18, 2300991 (2024). |
[9] |
Son, J. -G. et al. Morphology evolution of self-organized porous structures in silicon surface. Results in Physics 12, 46-51 (2019). |
[10] |
Liu, W. et al. Transformation from nano-ripples to nano-triangle arrays and their orientation control on titanium surfaces by using orthogonally polarized femtosecond laser double-pulse sequences. Applied Surface Science 588, 152918 (2022). doi: 10.1016/j.apsusc.2022.152918 |
[11] |
Giannuzzi, G. et al. Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses. Applied Surface Science 494, 1055-1065 (2019). doi: 10.1016/j.apsusc.2019.07.126 |
[12] |
Nakhoul, A. et al. Boosted Spontaneous Formation of High-Aspect Ratio Nanopeaks on Ultrafast Laser-Irradiated Ni Surface. Advanced Science 9, 2200761 (2022). doi: 10.1002/advs.202200761 |
[13] |
Nakhoul, A. et al. Tailoring the surface morphology of Ni at the nanometric scale by ultrashort laser pulses. Applied Physics A 128, 933 (2022). |
[14] |
Downer, M. C., Fork, R. L. & Shank, C. V. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface. Journal of the Optical Society of America B 2, 595-599 (1985). |
[15] |
Sokolowski-Tinten, K. et al. Transient states of matter during short pulse laser ablation. Physical Review Letters 81, 224 (1998). |
[16] |
Von der Linde, D. & Sokolowski-Tinten, K. The physical mechanisms of short-pulse laser ablation. Applied Surface Science 154, 1-10 (2000). |
[17] |
Bonse, J. et al. Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium. Physical Review B 74, 134106 (2006). |
[18] |
Cheng, K. et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film. Physical Review B 98, 184106 (2018). |
[19] |
Zhou, K. et al. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging. Journal of Applied Physics 121, 104301 (2017). |
[20] |
Zhang, Y. et al. Femtosecond laser-induced periodic structures: Mechanisms, techniques, and applications. Opto-Electronic Science 1, 220005-1-220005-21 (2022). |
[21] |
Yao, Y. et al. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics 8, 738-744 (2021). |
[22] |
He, Y. et al. Temporal compressive super-resolution microscopy at frame rate of 1200 frames per second and spatial resolution of 100 nm. Advanced Photonics 5, 026003-026003 (2023). |
[23] |
Alvarez‐Alegria, M., Ruiz de Galarreta, C. & Siegel, J. Real‐Time 3D Visualization of the Formation of Micrograting Structures Upon Direct Laser Interference Patterning of Ge. Laser & Photonics Reviews 17, 2300145 (2023). |
[24] |
Lian, Y. et al. Ultrafast quasi-three-dimensional imaging. International Journal of Extreme Manufacturing 5, 045601 (2023). |
[25] |
Xu, J. et al. Imaging ultrafast evolution of subwavelength-sized topography using single-probe structured light microscopy. Photonics Research 10, 1900-1908 (2022). |
[26] |
Sun, Z. et al. Discriminative repair approach to remove shadow-induced error for typical digital fringe projection. Optics Express 28, 26076-26090 (2020). |
[27] |
Lu, L. et al. Shadow removal method for phase-shifting profilometry. Applied Optics 54, 6059-6064 (2015). |
[28] |
Wang, X. et al. Plasmonic-thermoelectric nanotweezers for immersive SERS mapping. ACS Nano 16, 18621-18629 (2022). |
[29] |
Ni, J. et al. Super-resolution three-dimensional structured illumination profilometry for in situ measurement of femtosecond laser ablation morphology. APL Photonics 8, 101302 (2023). |
[30] |
Bonse, J. et al. Laser-Induced Periodic Surface Structures-A Scientific Evergreen. IEEE Journal of Selected Topics in Quantum Electronics 23, 15 (2017). |
[31] |
Bonse, J. & Gräf, S. Maxwell meets Marangoni—a review of theories on laser‐induced periodic surface structures. Laser & Photonics Reviews 14, 2000215 (2020). |
[32] |
Sipe, J. et al. Laser-induced periodic surface structure. I. Theory. Physical Review B 27, 1141 (1983). |
[33] |
Huang, M. et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062-4070 (2009). |
[34] |
Reif, J., Varlamova, O. & Costache, F. Femtosecond laser induced nanostructure formation: self-organization control parameters. Applied Physics A 92, 1019-1024 (2008). |
[35] |
Varlamova, O. et al. The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results. Applied Surface Science 257, 5465-5469 (2011). |
[36] |
Fraggelakis, F. et al. Controlling 2D laser nano structuring over large area with double femtosecond pulses. Applied Surface Science 470, 677-686 (2019). |
[37] |
Bonse, J., Brzezinka, K. W. & Meixner, A. J. Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Applied Surface Science 221, 215-230 (2004). |
[38] |
Rousse, A. et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65-68 (2001). |
[39] |
Mills, K. C. & Courtney, L. Thermophysical properties of silicon. ISIJ International 40, S130-S138 (2000). |
[40] |
Bonse, J., Wiggins, S. M. & Solis, J. Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide. Journal of Applied Physics 96, 2352-2358 (2004). |
[41] |
Jee, Y., Becker, M. F. & Walser, R. M. Laser-induced damage on single-crystal metal surfaces. Journal of the Optical Society of America B 5, 648-659 (1988). |